SPIR-V encodes the read_only and write_only access qualifiers of pipes,
so separate LLVM IR types are required to target SPIR-V. Other backends
may also find this useful.
These new types are `opencl.pipe_ro_t` and `opencl.pipe_wo_t`, which
replace `opencl.pipe_t`.
This replaces __get_pipe_num_packets(...) and __get_pipe_max_packets(...)
which took a read_only pipe with separate versions for read_only and
write_only pipes, namely:
* __get_pipe_num_packets_ro(...)
* __get_pipe_num_packets_wo(...)
* __get_pipe_max_packets_ro(...)
* __get_pipe_max_packets_wo(...)
These separate versions exist to avoid needing a bitcast to one of the
two qualified pipe types.
Patch by Stuart Brady.
Differential Revision: https://reviews.llvm.org/D46015
llvm-svn: 331026
OpenCL runtime tracks the invoke function emitted for
any block expression. Due to restrictions on blocks in
OpenCL (v2.0 s6.12.5), it is always possible to know the
block invoke function when emitting call of block expression
or __enqueue_kernel builtin functions. Since __enqueu_kernel
already has an argument for the invoke function, it is redundant
to have invoke function member in the llvm block literal structure.
This patch removes invoke function from the llvm block literal
structure. It also removes the bitcast of block invoke function
to the generic block literal type which is useless for OpenCL.
This will save some space for the kernel argument, and also
eliminate some store instructions.
Differential Revision: https://reviews.llvm.org/D43783
llvm-svn: 326937
The following test case causes issue with codegen of __enqueue_block
void (^block)(void) = ^{ callee(id, out); };
enqueue_kernel(queue, 0, ndrange, block);
Clang first does codegen for block expression in the first line and deletes its block info.
Clang then tries to do codegen for the same block expression again for the second line,
and fails because the block info is gone.
The fix is to do normal codegen for both lines. Introduce an API to OpenCL runtime to
record llvm block invoke function and llvm block literal emitted for each AST block
expression, and use the recorded information for generating the wrapper kernel.
The EmitBlockLiteral APIs are cleaned up to minimize changes to the normal codegen
of blocks.
Another minor issue is that some clean up AST expression is generated for block
with captures, which can be stripped by IgnoreImplicit.
Differential Revision: https://reviews.llvm.org/D43240
llvm-svn: 325264
Commit 7ac28eb0a5 / r310911 ("[OpenCL] Allow targets to select address
space per type", 2017-08-15) made Basic depend on AST, introducing a
circular dependency. Break this dependency by adding the
OpenCLTypeKind enum in Basic and map from AST types to this enum in
ASTContext.
Differential Revision: https://reviews.llvm.org/D40838
llvm-svn: 319883
In OpenCL the kernel function and non-kernel function has different calling conventions.
For certain targets they have different argument ABIs. Also kernels have special function
attributes and metadata for runtime to launch them.
The blocks passed to enqueue_kernel is supposed to be executed as kernels. As such,
the block invoke function should be emitted as kernel with proper calling convention and
argument ABI.
This patch emits enqueued block as kernel. If a block is both called directly and passed
to enqueue_kernel, separate functions will be generated.
Differential Revision: https://reviews.llvm.org/D38134
llvm-svn: 315804
Currently block is translated to a structure equivalent to
struct Block {
void *isa;
int flags;
int reserved;
void *invoke;
void *descriptor;
};
Except invoke, which is the pointer to the block invoke function,
all other fields are useless for OpenCL, which clutter the IR and
also waste memory since the block struct is passed to the block
invoke function as argument.
On the other hand, the size and alignment of the block struct is
not stored in the struct, which causes difficulty to implement
__enqueue_kernel as library function, since the library function
needs to know the size and alignment of the argument which needs
to be passed to the kernel.
This patch removes the useless fields from the block struct and adds
size and align fields. The equivalent block struct will become
struct Block {
int size;
int align;
generic void *invoke;
/* custom fields */
};
It also changes the pointer to the invoke function to be
a generic pointer since the address space of a function
may not be private on certain targets.
Differential Revision: https://reviews.llvm.org/D37822
llvm-svn: 314932
Generalize getOpenCLImageAddrSpace into getOpenCLTypeAddrSpace, such
that targets can select the address space per type.
No functional changes intended.
Initial patch by Simon Perretta.
Differential Revision: https://reviews.llvm.org/D33989
llvm-svn: 310911
Removed ndrange_t as Clang builtin type and added
as a struct type in the OpenCL header.
Use type name to do the Sema checking in enqueue_kernel
and modify IR generation accordingly.
Review: D28058
Patch by Dmitry Borisenkov!
llvm-svn: 295311
The size of image type is reported incorrectly as size of a pointer to address space 0, which causes error when casting image type to pointers by __builtin_astype.
The fix is to get image address space from TargetInfo then report the size accordingly.
Differential Revision: https://reviews.llvm.org/D22927
llvm-svn: 277647
Currently Clang use int32 to represent sampler_t, which have been a source of issue for some backends, because in some backends sampler_t cannot be represented by int32. They have to depend on kernel argument metadata and use IPA to find the sampler arguments and global variables and transform them to target specific sampler type.
This patch uses opaque pointer type opencl.sampler_t* for sampler_t. For each use of file-scope sampler variable, it generates a function call of __translate_sampler_initializer. For each initialization of function-scope sampler variable, it generates a function call of __translate_sampler_initializer.
Each builtin library can implement its own __translate_sampler_initializer(). Since the real sampler type tends to be architecture dependent, allowing it to be initialized by a library function simplifies backend design. A typical implementation of __translate_sampler_initializer could be a table lookup of real sampler literal values. Since its argument is always a literal, the returned pointer is known at compile time and easily optimized to finally become some literal values directly put into image read instructions.
This patch is partially based on Alexey Sotkin's work in Khronos Clang (3d4eec6162).
Differential Revision: https://reviews.llvm.org/D21567
llvm-svn: 277024
Allows AMDGCN target to generate images (such as %opencl.image2d_t) in constant address space.
Images will still be generated in global address space by default.
Added tests to existing opencl-types.cl in test\CodeGenOpenCL.
Patch by Aaron En Ye Shi.
Differential Revision: https://reviews.llvm.org/D22523
llvm-svn: 276161
Putting OpenCLImageTypes.def to clangAST library violates layering requirement: "It's not OK for a Basic/ header to include an AST/ header".
This fixes the modules build.
Differential revision: http://reviews.llvm.org/D18954
Reviewers: Richard Smith, Vassil Vassilev.
llvm-svn: 266180
I. Current implementation of images is not conformant to spec in the following points:
1. It makes no distinction with respect to access qualifiers and therefore allows to use images with different access type interchangeably. The following code would compile just fine:
void write_image(write_only image2d_t img);
kernel void foo(read_only image2d_t img) { write_image(img); } // Accepted code
which is disallowed according to s6.13.14.
2. It discards access qualifier on generated code, which leads to generated code for the above example:
call void @write_image(%opencl.image2d_t* %img);
In OpenCL2.0 however we can have different calls into write_image with read_only and wite_only images.
Also generally following compiler steps have no easy way to take different path depending on the image access: linking to the right implementation of image types, performing IR opts and backend codegen differently.
3. Image types are language keywords and can't be redeclared s6.1.9, which can happen currently as they are just typedef names.
4. Default access qualifier read_only is to be added if not provided explicitly.
II. This patch corrects the above points as follows:
1. All images are encapsulated into a separate .def file that is inserted in different points where image handling is required. This avoid a lot of code repetition as all images are handled the same way in the code with no distinction of their exact type.
2. The Cartesian product of image types and image access qualifiers is added to the builtin types. This simplifies a lot handling of access type mismatch as no operations are allowed by default on distinct Builtin types. Also spec intended access qualifier as special type qualifier that are combined with an image type to form a distinct type (see statement above - images can't be created w/o access qualifiers).
3. Improves testing of images in Clang.
Author: Anastasia Stulova
Reviewers: bader, mgrang.
Subscribers: pxli168, pekka.jaaskelainen, yaxunl.
Differential Revision: http://reviews.llvm.org/D17821
llvm-svn: 265783
Summary:
Support for OpenCL 2.0 pipe type.
This is a bug-fix version for bader's patch reviews.llvm.org/D14441
Reviewers: pekka.jaaskelainen, Anastasia
Subscribers: bader, Anastasia, cfe-commits
Differential Revision: http://reviews.llvm.org/D15603
llvm-svn: 257254
Summary: It breaks the build for the ASTMatchers
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D13893
llvm-svn: 250827
from the global address space (6.5.1 of the OpenCL 1.2 specification).
This makes clang construct the image arguments in the global address
space and generate the argument metadata with the correct address space
descriptor.
Patch by Pedro Ferreira!
llvm-svn: 198868