When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264697
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264596
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
We had two code paths. One would create names like "foo.1" and the other
names like "foo1".
For globals it is important to use "foo.1" to help C++ name demangling.
For locals there is no strong reason to go one way or the other so I
kept the most common mangling (foo1).
llvm-svn: 253804
Doing so could cause the post-unswitching convergent ops to be
control-dependent on the unswitch condition where they were not before.
This check could be refined to allow unswitching where the convergent
operation was already control-dependent on the unswitch condition.
llvm-svn: 249874
Summary: This patch adds block frequency analysis to LoopUnswitch pass to recognize hot/cold regions. For cold regions the pass only performs trivial unswitches since they do not increase code size, and for hot regions everything works as before. This helps to minimize code growth in cold regions and be more aggressive in hot regions. Currently the default cold regions are blocks with frequencies below 20% of function entry frequency, and it can be adjusted via -loop-unswitch-cold-block-frequency flag. The entire feature is controlled via -loop-unswitch-with-block-frequency flag and it is off by default.
Reviewers: broune, silvas, dnovillo, reames
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D11605
llvm-svn: 248777
Patch by: simoncook
Unlike BitCasts, AddrSpaceCasts do not always produce an output the same size as its input, which was previously assumed. This fixes cases where two address spaces do not have the same size pointer, as an assertion failure would occur when trying to prove deferenceability. LoopUnswitch is used in the particular test, but LICM also exhibits the same problem.
Differential Revision: http://reviews.llvm.org/D13008
llvm-svn: 248422
Summary:
This patch improves trivial loop unswitch.
The current trivial loop unswitch only checks if loop header's terminator contains a trivial unswitch condition. But if the loop header only has one reachable successor (due to intentionally or unintentionally missed code simplification), we should consider the successor as part of the loop header. Therefore, instead of stopping at loop header's terminator, we should keep traversing its successors within loop until reach a *real* conditional branch or switch (whose condition can not be constant folded). This change will enable a single -loop-unswitch pass to unswitch multiple trivial conditions (unswitch one trivial condition could open opportunity to unswitch another one in the same loop), while the old implementation can unswitch only one per pass.
Reviewers: reames, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11481
llvm-svn: 243203
Summary: The current code in LoopUnswtich::processCurrentLoop() mixes trivial loop unswitch and non-trivial loop unswitch together. It goes over all basic blocks in the loop and checks if a condition is trivial or non-trivial unswitch condition. However, trivial unswitch condition can only occur in the loop header basic block (where it controls whether or not the loop does something at all). This refactoring separate trivial loop unswitch and non-trivial loop unswitch. Before going over all basic blocks in the loop, it checks if the loop header contains a trivial unswitch condition. If so, unswitch it. Otherwise, go over all blocks like before but don't check trivial condition any more since they are not possible to be in the other blocks. This code has no functionality change.
Reviewers: meheff, reames, broune
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11276
llvm-svn: 242873
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
Summary:
Statistics are still available in Release+Asserts (any +Asserts builds),
and stats can also be turned on with LLVM_ENABLE_STATS.
Move some of the FastISel stats that were moved under DEBUG()
back out of DEBUG(), since stats are disabled across the board now.
Many tests depend on grepping "-stats" output. Move those into
a orig_dir/Stats/. so that they can be marked as unsupported
when building without statistics.
Differential Revision: http://llvm-reviews.chandlerc.com/D486
llvm-svn: 176733
Listing all of the attributes for the callee of a call/invoke instruction is way
too much and makes the IR unreadable. Use references to attributes instead.
llvm-svn: 175877
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
llvm-svn: 170704
versions of Bash. In addition, I can back out the change to the lit
built-in shell test runner to support this.
This should fix the majority of fallout on Darwin, but I suspect there
will be a few straggling issues.
llvm-svn: 159544
The primary advantage is that loop optimizations will be applied in a
stable order. This helps debugging and unit test creation. It is also
a better overall implementation without pathologically bad performance
on deep functions.
On large functions (llvm-stress --size=200000 | opt -loops)
Before: 0.1263s
After: 0.0225s
On deep functions (after tweaking llvm-stress, thanks Nadav):
Before: 0.2281s
After: 0.0227s
See r158790 for more comments.
The loop tree is now consistently generated in forward order, but loop
passes are applied in reverse order over the program. If we have a
loop optimization that prefers forward order, that can easily be
achieved by adding a different type of LoopPassManager.
llvm-svn: 159183
Allow the "SplitCriticalEdge" function to split the edge to a landing pad. If
the pass is *sure* that it thinks it knows what it's doing, then it may go ahead
and specify that the landing pad can have its critical edge split. The loop
unswitch pass is one of these passes. It will split the critical edges of all
edges coming from a loop to a landing pad not within the loop. Doing so will
retain important loop analysis information, such as loop simplify.
llvm-svn: 155817
Take this opportunity to generalize the indirectbr bailout logic for
loop transformations. CFG transformations will never get indirectbr
right, and there's no point trying.
llvm-svn: 154386
http://llvm.org/bugs/show_bug.cgi?id=12343
We have not trivial way for splitting edges that are goes from indirect branch. We can do it with some tricks, but it should be additionally discussed. And it is still dangerous due to difficulty of indirect branches controlling.
Fix forbids this case for unswitching.
llvm-svn: 153879
1. Size heuristics changed. Now we calculate number of unswitching
branches only once per loop.
2. Some checks was moved from UnswitchIfProfitable to
processCurrentLoop, since it is not changed during processCurrentLoop
iteration. It allows decide to skip some loops at an early stage.
Extended statistics:
- Added total number of instructions analyzed.
llvm-svn: 147935
time regressions. In general, it is beneficial to compile-time.
Original commit message:
Fix for bug #11429: Wrong behaviour for switches. Small improvement for code
size heuristics.
llvm-svn: 147175
performance regressions (both execution-time and compile-time) on our
nightly testers.
Original commit message:
Fix for bug #11429: Wrong behaviour for switches. Small improvement for code
size heuristics.
llvm-svn: 147131
which edge to split by pred/succ pair, which means that we can end up splitting
the wrong edge (by case value) in the switch statement entirely. Fixes PR10031!
llvm-svn: 132535
preserves LCSSA form out of ScalarEvolution and into the LoopInfo
class. Use it to check that SimplifyInstruction simplifications
are not breaking LCSSA form. Fixes PR8622.
llvm-svn: 119727
condition we're unswitching on. In this case, don't try to
simplify the second copy of the loop which may be dead or not,
but is probably a constant now. This fixes PR6879
llvm-svn: 101870
the PassManager code into a regular verifyAnalysis method.
Also, reorganize loop verification. Make the LoopPass infrastructure
call verifyLoop as needed instead of having LoopInfo::verifyAnalysis
check every loop in the function after each looop pass. Add a new
command-line argument, -verify-loop-info, to enable the expensive
full checking.
llvm-svn: 82952