Summary: This changes overflow handling during instrumentation profile merge. Rathar than throwing away records that would result in counter overflow, merged counts are instead clamped to the maximum representable value. A warning about counter overflow is still surfaced to the user as before.
Reviewers: dnovillo, davidxl, silvas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14893
llvm-svn: 254525
The ARM ARM is clear that 128-bit loads are only guaranteed to have been atomic
if there has been a corresponding successful stxp. It's less clear for AArch32, so
I'm leaving that alone for now.
llvm-svn: 254524
Summary: Only global or readonly segment variables should appear in object files.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15111
llvm-svn: 254519
|9B DD /7| FSTSW m2byte| Valid Valid Store FPU status word at m2byteafter checking for pending unmasked floating-point exceptions.|
|9B DF E0| FSTSW AX| Valid Valid Store FPU status word in AX register after checking for pending unmasked floating-point exceptions.|
|DD /7 |FNSTSW *m2byte| Valid Valid Store FPU status word at m2bytewithout checking for pending unmasked floating-point exceptions.|
|DF E0 |FNSTSW *AX| Valid Valid Store FPU status word in AX register without checking for pending unmasked floating-point exceptions|
m2byte is word register, and therefor instruction operand need to be change from f32mem to i16mem.
Differential Revision: http://reviews.llvm.org/D14953
llvm-svn: 254512
On FMA targets, we can avoid having to load a constant to negate a float/double multiply by instead using a FNMSUB (-(X*Y)-0)
Fix for PR24366
Differential Revision: http://reviews.llvm.org/D14909
llvm-svn: 254495
I checked and updated the cost of AVX-512 conversion operations. Added cost of conversion operations in DQ mode.
Conversion of illegal types that requires vector split is not calculated right now (like for other X86 targets).
Differential Revision: http://reviews.llvm.org/D15074
llvm-svn: 254494
time.
The new overloaded function is used when an attribute is added to a
large number of slots of an AttributeSet (for example, to function
parameters). This is much faster than calling AttributeSet::addAttribute
once per slot, because AttributeSet::getImpl (which calls
FoldingSet::FIndNodeOrInsertPos) is called only once per function
instead of once per slot.
With this commit, clang compiles a file which used to take over 22
minutes in just 13 seconds.
rdar://problem/23581000
Differential Revision: http://reviews.llvm.org/D15085
llvm-svn: 254491
This is very rudimentary support for debug_cu_index, but it is enough to
allow llvm-dwarfdump to find the offsets for contributions and
correctly dump debug_info.
It will need to actually find the real signature of the unit and build
the real hash table with the right number of buckets, as per the DWP
specification.
It will also need to be expanded to cover the tu_index as well.
llvm-svn: 254489
For efficiency reason, when importing multiple functions for the same Module,
we can avoid reparsing it every time.
Differential Revision: http://reviews.llvm.org/D15102
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 254486
When linking static archive, there is no individual module files to
load. Instead they can be mmap'ed and could be initialized from a
buffer directly. The callback provide flexibility to override the
scheme for loading module from the summary.
Differential Revision: http://reviews.llvm.org/D15101
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 254479
We mustn't introduce a shift of exactly 64-bits for any inputs, since that's an
UNDEF value (and worse, it's not what you want with the natural Arch64
implementation).
The generated code is pretty horrific, but I couldn't come up with an obviously
better alternative (if the amount is constant EXTR could help). Turns out
128-bit shifts are just nasty.
rdar://22491037
llvm-svn: 254475
The bug is introduced in r254377 which failed some tests on ARM, where a new
probability is assigned to a successor but the provided BB may not be a
successor.
llvm-svn: 254463
The values in this field are compared against getAvailableFeatures()
which returns an uint64_t. This was causing problems in an internal
branch.
llvm-svn: 254462
Profile readers using incompatible on-disk hash table format can now share the same
implementation and interfaces.
Differential Revision: http://reviews.llvm.org/D15100
llvm-svn: 254458
ConstantDataArray::getImpl and ConstantDataVector::getImpl had a lot
of copy pasta in how they handled sequences of constants. Break that
out into a couple of simple functions.
llvm-svn: 254456
Don't use commuteInstruction, and don't commute if
doing so will not improve legality. Skip the more
complex checks for literal operands and constant bus restrictions,
which are not a concern for VOP2 instructions because src1
does not accept SGPRs or constants and few implicitly
read vcc.
This gets called quite a few times and the
attempts at commuting are a significant fraction
of the time spent in SIFixSGPRCopies, so it's
somewhat worthwhile to optimize. With this patch and others
leading up to it, this reduces the compile time of SIFixSGPRCopies
on some of the LuxMark 2 kernels from ~8ms to ~5ms on my system.
llvm-svn: 254452
Summary:
This had been broken for a very long time, but nobody noticed until
D14357 enabled shrink-wrapping by default.
Reviewers: jroelofs, qcolombet
Subscribers: tyomitch, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14986
llvm-svn: 254444
Summary:
When not useful bits, BitWidth becomes 0 and APInt will not be happy.
See https://llvm.org/bugs/show_bug.cgi?id=25571
We can just mark the operand as IMPLICIT_DEF is none bits of it is used.
Reviewers: t.p.northover, jmolloy
Subscribers: gberry, jmolloy, mgrang, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14803
llvm-svn: 254440
The cost for scalarized operations is computed as N * (scalar operation
cost + 1 extractelement + 1 insertelement). This partially fixes
inflating the cost of scalarized operations since every operation is
scalarized and free. I don't think we want any cost asociated with
scalarization, but for now insertelement is still counted. I'm not sure
if we should pretend that insertelement is also free, or add a way
to compute a custom scalarization cost.
llvm-svn: 254438
By including the module name in the error message.
This makes the error message much more useful and
saves a trip to the debugger.
Reviewers: dexonsmith
Subscribers: dexonsmith, llvm-commits
Differential Revision: http://reviews.llvm.org/D14473
llvm-svn: 254437
It was only used from LTO for a debug feature, and LTO can just create
another linker.
It is pretty odd to have a method to reset the module in the middle of a
link. It would make IdentifiedStructTypes inconsistent with the Module
for example.
llvm-svn: 254434
Summary:
This makes the assembly output look nicer and there is no reason to
have custom strings for these.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D14671
llvm-svn: 254426
It has to be a bit special because:
* materializeInitFor is not really supposed to call replaceAllUsesWith.
The caller has a plain variable with Dst and expects just the
initializer to be set, not for it to be removed.
* Calling mutateType as we used to do before gets some type
inconsistency which breaks the bitcode writer.
* If linkAppendingVarProto create a dest decl with the correct type to
avoid the above problems, it needs to put the original dst init in
some side table for materializeInitFor to use.
In the end the simplest solution seems to be to just have
linkAppendingVarProto do all the work and set ValueMap[SrcGV to avoid
recursion.
llvm-svn: 254424
The difference is that now we don't error on out-of-comdat access to
internal global values. We copy them instead. This seems to match the
expectation of COFF linkers (see pr25686).
Original message:
Start deciding earlier what to link.
A traditional linker is roughly split in symbol resolution and
"copying
stuff".
The two tasks are badly mixed in lib/Linker.
This starts splitting them apart.
With this patch there are no direct call to linkGlobalValueBody or
linkGlobalValueProto. Everything is linked via WapValue.
This also includes a few fixes:
* A GV goes undefined if the comdat is dropped (comdat11.ll).
* We error if an internal GV goes undefined (comdat13.ll).
* We don't link an unused comdat.
The first two match the behavior of an ELF linker. The second one is
equivalent to running globaldce on the input.
llvm-svn: 254418
Cost calculation for vector GEP failed with due to invalid cast to GEP index operand.
The bug is fixed, added a test.
http://reviews.llvm.org/D14976
llvm-svn: 254408
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
llvm-svn: 254404
Previously it is not allowed for each MBB to have successors with both known and
unknown probabilities. However, this may be too strict as at this stage we could
not always guarantee that. It is better to remove this restriction now, and I
will work on validating MBB's successors' probabilities first (for example,
check if the sum is approximate one).
llvm-svn: 254402
The Statistical Profiling Extension is an optional extension to
ARMv8.2-A. Since it is an optional extension, I have added the
FeatureSPE subtarget feature to control it. The assembler-visible parts
of this extension are the new "psb csync" instruction, which is
equivalent to "hint #17", and a number of system registers.
Differential Revision: http://reviews.llvm.org/D15021
llvm-svn: 254401
Add ARMv8.2-A to TargetParser, so that it can be used by the clang
command-line options and the .arch directive.
Most testing of this will be done in clang, checking that the
command-line options that this enables work.
Differential Revision: http://reviews.llvm.org/D15037
llvm-svn: 254400
This adds subtarget features for ARMv8.2-A, which builds on (and
requires the features from) ARMv8.1-A. Most assembler-visible features
of ARMv8.2-A are system instructions, and are all required parts of the
architecture, so just depend on the HasV8_2aOps subtarget feature.
There is also one large, optional feature, which adds 16-bit floating
point versions of all existing floating-point instructions (VFP and
SIMD), this is represented by the FeatureFullFP16 subtarget feature.
Differential Revision: http://reviews.llvm.org/D15036
llvm-svn: 254399
Not sure how to test this. I noticed by inspection in the isel tables where the same pattern tried to produce DIV and DIVR or SUB and SUBR.
llvm-svn: 254388
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
SDAG currently can emit debug location for function parameters when
an llvm.dbg.declare points to either a function argument SSA temp,
or to an AllocaInst. This change extends this logic by adding a
fallback case when neither of the above is true.
This is required for SafeStack, which may copy the contents of a
byval function argument into something that is not an alloca, and
then describe the target as the new location of the said argument.
llvm-svn: 254352
The current code does not take alloca array size into account and,
as a result, considers any access past the first array element to be
unsafe.
llvm-svn: 254350
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
We currently output FMA instructions on targets which support both FMA4 + FMA (i.e. later Bulldozer CPUS bdver2/bdver3/bdver4).
This patch flips this so FMA4 is preferred; this is for several reasons:
1 - FMA4 is non-destructive reducing the need for mov instructions.
2 - Its more straighforward to commute and fold inputs (although the recent work on FMA has reduced this difference).
3 - All supported targets have FMA4 performance equal or better to FMA - Piledriver (bdver2) in particular has half the throughput when executing FMA instructions.
Its looks like no future AMD processor lines will support FMA4 after the Bulldozer series so we're not causing problems for later CPUs.
Differential Revision: http://reviews.llvm.org/D14997
llvm-svn: 254339
A traditional linker is roughly split in symbol resolution and "copying
stuff".
The two tasks are badly mixed in lib/Linker.
This starts splitting them apart.
With this patch there are no direct call to linkGlobalValueBody or
linkGlobalValueProto. Everything is linked via WapValue.
This also includes a few fixes:
* A GV goes undefined if the comdat is dropped (comdat11.ll).
* We error if an internal GV goes undefined (comdat13.ll).
* We don't link an unused comdat.
The first two match the behavior of an ELF linker. The second one is
equivalent to running globaldce on the input.
llvm-svn: 254336
If we know we have stack objects, we reserve the registers
that the private buffer resource and wave offset are passed
and use them directly.
If not, reserve the last 5 SGPRs just in case we need to spill.
After register allocation, try to pick the next available registers
instead of the last SGPRs, and then insert copies from the inputs
to the reserved registers in the progloue.
This also only selectively enables all of the input registers
which are really required instead of always enabling them.
llvm-svn: 254331
It does not work because of emergency stack slots.
This pass was supposed to eliminate dummy registers for the
spill instructions, but the register scavenger can introduce
more during PrologEpilogInserter, so some would end up
left behind if they were needed.
The potential for spilling the scratch resource descriptor
and offset register makes doing something like this
overly complicated. Reserve registers to use for the resource
descriptor and use them directly in eliminateFrameIndex.
Also removes creating another scratch resource descriptor
when directly selecting scratch MUBUF instructions.
The choice of which registers are reserved is temporary.
For now it attempts to pick the next available registers
after the user and system SGPRs.
llvm-svn: 254329
The MachineVerifier wants to check that the register operands of an
instruction belong to the instruction's register class. RIP-relative
control flow instructions violated this by referencing RIP. While this
was fixed for SysV, it was never fixed for Win64.
llvm-svn: 254315
Re-enable shrink wrapping for PPC64 Little Endian.
One minor modification to PPCFrameLowering::findScratchRegister was necessary to handle fall-thru blocks (blocks with no terminator) correctly.
Tested with all LLVM test, clang tests, and the self-hosting build, with no problems found.
PHabricator: http://reviews.llvm.org/D14778
llvm-svn: 254314
Value of offset operand for microMIPS BALC and BC instructions is currently shifted 2 bits, but it should be 1 bit.
Differential Revision: http://reviews.llvm.org/D14770
llvm-svn: 254296
This one is enabled only under -ffast-math. There are cases where the
difference between the value computed and the correct value is huge
even for ffast-math, e.g. as Steven pointed out:
x = -1, y = -4
log(pow(-1), 4) = 0
4*log(-1) = NaN
I checked what GCC does and apparently they do the same optimization
(which result in the dramatic difference). Future work might try to
make this (slightly) less worse.
Differential Revision: http://reviews.llvm.org/D14400
llvm-svn: 254263
This fixes buildbots in systems that std::to_string is not present. It
also tidies the output of the diagnostic to render doubles a bit better
(thanks Ben Kramer for help with string streams and format).
llvm-svn: 254261
We could already recognise shuffle(FSUB, FADD) -> ADDSUB, this allow us to recognise shuffle(FADD, FSUB) -> ADDSUB by commuting the shuffle mask prior to matching.
llvm-svn: 254259
This is the last step to enable profile runtime to share the same value prof
data format and reader/writer code with llvm host tools. The VP related
data structures are moved to a section in InstrProfData.inc enabled with macro
INSTR_PROF_VALUE_PROF_DATA, and common API implementations are enabled with
INSTR_PROF_COMMON_API_IMPL. There should be no functional change.
llvm-svn: 254235
This patch implements dynamic realignment of stack objects for targets
with a non-realigned stack pointer. Behaviour in FunctionLoweringInfo
is changed so that for a target that has StackRealignable set to
false, over-aligned static allocas are considered to be variable-sized
objects and are handled with DYNAMIC_STACKALLOC nodes.
It would be good to group aligned allocas into a single big alloca as
an optimization, but this is yet todo.
SystemZ benefits from this, due to its stack frame layout.
New tests SystemZ/alloca-03.ll for aligned allocas, and
SystemZ/alloca-04.ll for "no-realign-stack" attribute on functions.
Review and help from Ulrich Weigand and Hal Finkel.
llvm-svn: 254227
Raw profile writer needs to write all data of one kind in one continuous block,
so the buffer needs to be pre-allocated and passed to the writer method in
pieces for function profile data. The change adds the support for raw value data
writing.
llvm-svn: 254219