Commit Graph

15 Commits

Author SHA1 Message Date
Quentin Colombet bf490d4a32 Loop Strength Reduce: Scaling factor cost.
Account for the cost of scaling factor in Loop Strength Reduce when rating the
formulae. This uses a target hook.

The default implementation of the hook is: if the addressing mode is legal, the
scaling factor is free.

<rdar://problem/13806271>

llvm-svn: 183045
2013-05-31 21:29:03 +00:00
Arnold Schwaighofer b977387112 CostModel: Add parameter to instruction cost to further classify operand values
On certain architectures we can support efficient vectorized version of
instructions if the operand value is uniform (splat) or a constant scalar.
An example of this is a vector shift on x86.

We can efficiently support

for (i = 0 ; i < ; i += 4)
  w[0:3] = v[0:3] << <2, 2, 2, 2>

but not

for (i = 0; i < ; i += 4)
  w[0:3] = v[0:3] << x[0:3]

This patch adds a parameter to getArithmeticInstrCost to further qualify operand
values as uniform or uniform constant.

Targets can then choose to return a different cost for instructions with such
operand values.

A follow-up commit will test this feature on x86.

radar://13576547

llvm-svn: 178807
2013-04-04 23:26:21 +00:00
Patrik Hagglund 3eaa4b932a Small fix for cost analysis of ptrtoint.
This seems to be a "copy-paste error" introducecd in r156140.

llvm-svn: 176863
2013-03-12 13:18:30 +00:00
Arnold Schwaighofer 594fa2dc2b ARM cost model: Address computation in vector mem ops not free
Adds a function to target transform info to query for the cost of address
computation. The cost model analysis pass now also queries this interface.
The code in LoopVectorize adds the cost of address computation as part of the
memory instruction cost calculation. Only there, we know whether the instruction
will be scalarized or not.
Increase the penality for inserting in to D registers on swift. This becomes
necessary because we now always assume that address computation has a cost and
three is a closer value to the architecture.

radar://13097204

llvm-svn: 174713
2013-02-08 14:50:48 +00:00
Chandler Carruth 0ba8db45c6 Begin fleshing out an interface in TTI for modelling the costs of
generic function calls and intrinsics. This is somewhat overlapping with
an existing intrinsic cost method, but that one seems targetted at
vector intrinsics. I'll merge them or separate their names and use cases
in a separate commit.

This sinks the test of 'callIsSmall' down into TTI where targets can
control it. The whole thing feels very hack-ish to me though. I've left
a FIXME comment about the fundamental design problem this presents. It
isn't yet clear to me what the users of this function *really* care
about. I'll have to do more analysis to figure that out. Putting this
here at least provides it access to proper analysis pass tools and other
such. It also allows us to more cleanly implement the baseline cost
interfaces in TTI.

With this commit, it is now theoretically possible to simplify much of
the inline cost analysis's handling of calls by calling through to this
interface. That conversion will have to happen in subsequent commits as
it requires more extensive restructuring of the inline cost analysis.

The CodeMetrics class is now really only in the business of running over
a block of code and aggregating the metrics on that block of code, with
the actual cost evaluation done entirely in terms of TTI.

llvm-svn: 173148
2013-01-22 11:26:02 +00:00
Chandler Carruth bb9caa9241 Switch CodeMetrics itself over to use TTI to determine if an instruction
is free. The whole CodeMetrics API should probably be reworked more, but
this is enough to allow deleting the duplicate code there for computing
whether an instruction is free.

All of the passes using this have been updated to pull in TTI and hand
it to the CodeMetrics stuff. Further, a dead CodeMetrics API
(analyzeFunction) is nuked for lack of users.

llvm-svn: 173036
2013-01-21 13:04:33 +00:00
Chandler Carruth 511aa76048 Introduce a generic interface for querying an operation's expected
lowered cost.

Currently, this is a direct port of the logic implementing
isInstructionFree in CodeMetrics. The hope is that the interface can be
improved (f.ex. supporting un-formed instruction queries) and the
implementation abstracted so that as we have test cases and target
knowledge we can expose increasingly accurate heuristics to clients.

I'll start switching existing consumers over and kill off the routine in
CodeMetrics in subsequent commits.

llvm-svn: 172998
2013-01-21 01:27:39 +00:00
Renato Golin e1fb059327 Revert CostTable algorithm, will re-write
llvm-svn: 172992
2013-01-20 20:57:20 +00:00
Renato Golin cc99c42130 Fix 80-col and early exit in cost model
llvm-svn: 172877
2013-01-19 00:42:16 +00:00
Renato Golin f104c4c4ca Change CostTable model to be global to all targets
Moving the X86CostTable to a common place, so that other back-ends
can share the code. Also simplifying it a bit and commoning up
tables with one and two types on operations.

llvm-svn: 172658
2013-01-16 21:29:55 +00:00
Nadav Rotem b1791a75cd ARM Cost model: Use the size of vector registers and widest vectorizable instruction to determine the max vectorization factor.
llvm-svn: 172010
2013-01-09 22:29:00 +00:00
Nadav Rotem b696c36fcd Cost Model: Move the 'max unroll factor' variable to the TTI and add initial Cost Model support on ARM.
llvm-svn: 171928
2013-01-09 01:15:42 +00:00
Chandler Carruth 26c59fa870 Switch the SCEV expander and LoopStrengthReduce to use
TargetTransformInfo rather than TargetLowering, removing one of the
primary instances of the layering violation of Transforms depending
directly on Target.

This is a really big deal because LSR used to be a "special" pass that
could only be tested fully using llc and by looking at the full output
of it. It also couldn't run with any other loop passes because it had to
be created by the backend. No longer is this true. LSR is now just
a normal pass and we should probably lift the creation of LSR out of
lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done
this, or updated all of the tests to use opt and a triple, because
I suspect someone more familiar with LSR would do a better job. This
change should be essentially without functional impact for normal
compilations, and only change behvaior of targetless compilations.

The conversion required changing all of the LSR code to refer to the TTI
interfaces, which fortunately are very similar to TargetLowering's
interfaces. However, it also allowed us to *always* expect to have some
implementation around. I've pushed that simplification through the pass,
and leveraged it to simplify code somewhat. It required some test
updates for one of two things: either we used to skip some checks
altogether but now we get the default "no" answer for them, or we used
to have no information about the target and now we do have some.

I've also started the process of removing AddrMode, as the TTI interface
doesn't use it any longer. In some cases this simplifies code, and in
others it adds some complexity, but I think it's not a bad tradeoff even
there. Subsequent patches will try to clean this up even further and use
other (more appropriate) abstractions.

Yet again, almost all of the formatting changes brought to you by
clang-format. =]

llvm-svn: 171735
2013-01-07 14:41:08 +00:00
Chandler Carruth 50a36cd148 Make the popcnt support enums and methods have more clear names and
follow the conding conventions regarding enumerating a set of "kinds" of
things.

llvm-svn: 171687
2013-01-07 03:16:03 +00:00
Chandler Carruth d3e73556d6 Move TargetTransformInfo to live under the Analysis library. This no
longer would violate any dependency layering and it is in fact an
analysis. =]

llvm-svn: 171686
2013-01-07 03:08:10 +00:00