This extends the work done in r233995 so that now getFragment (in addition to
getSection) also works for variable symbols.
With that the existing logic to decide if a-b can be computed works even if
a or b are variables. Given that, the expression evaluation can avoid expanding
variables as aggressively and that in turn lets the relocation code see the
original variable.
In order for this to work with the asm streamer, there is now a dummy fragment
per section. It is used to assign a section to a symbol when no other fragment
exists.
This patch is a joint work by Maxim Ostapenko andy myself.
llvm-svn: 249303
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
The (mostly-deprecated) SelectionDAG-based ILPListDAGScheduler scheduler
was making poor scheduling decisions, causing high register pressure and
extraneous register spills.
Switching to the newer machine scheduler generates better code -- even
without there being a machine model defined for SPARC yet.
(Actually committing the test changes too, this time, unlike r247315)
llvm-svn: 247343
The (mostly-deprecated) SelectionDAG-based ILPListDAGScheduler scheduler
was making poor scheduling decisions, causing high register pressure and
extraneous register spills.
Switching to the newer machine scheduler generates better code -- even
without there being a machine model defined for SPARC yet.
llvm-svn: 247315
If you're going to realign %sp to get object alignment properly (which
the code does), and stack offsets and alignments are calculated going
down from %fp (which they are), then the total stack size had better
be a multiple of the alignment. LLVM did indeed ensure that.
And then, after aligning, the sparc frame code added 96 (for sparcv8)
to the frame size, making any requested alignment of 64-bytes or
higher *guaranteed* to be misaligned. The test case added with r245668
even tests this exact scenario, and asserted the incorrect behavior,
which I somehow failed to notice. D'oh.
This change fixes the frame lowering code to align the stack size
*after* adding the spill area, instead.
Differential Revision: http://reviews.llvm.org/D12349
llvm-svn: 246042
Note: I do not implement a base pointer, so it's still impossible to
have dynamic realignment AND dynamic alloca in the same function.
This also moves the code for determining the frame index reference
into getFrameIndexReference, where it belongs, instead of inline in
eliminateFrameIndex.
[Begin long-winded screed]
Now, stack realignment for Sparc is actually a silly thing to support,
because the Sparc ABI has no need for it -- unlike the situation on
x86, the stack is ALWAYS aligned to the required alignment for the CPU
instructions: 8 bytes on sparcv8, and 16 bytes on sparcv9.
However, LLVM unfortunately implements user-specified overalignment
using stack realignment support, so for now, I'm going to go along
with that tradition. GCC instead treats objects which have alignment
specification greater than the maximum CPU-required alignment for the
target as a separate block of stack memory, with their own virtual
base pointer (which gets aligned). Doing it that way avoids needing to
implement per-target support for stack realignment, except for the
targets which *actually* have an ABI-specified stack alignment which
is too small for the CPU's requirements.
Further unfortunately in LLVM, the default canRealignStack for all
targets effectively returns true, despite that implementing that is
something a target needs to do specifically. So, the previous behavior
on Sparc was to silently ignore the user's specified stack
alignment. Ugh.
Yet MORE unfortunate, if a target actually does return false from
canRealignStack, that also causes the user-specified alignment to be
*silently ignored*, rather than emitting an error.
(I started looking into fixing that last, but it broke a bunch of
tests, because LLVM actually *depends* on having it silently ignored:
some architectures (e.g. non-linux i386) have smaller stack alignment
than spilled-register alignment. But, the fact that a register needs
spilling is not known until within the register allocator. And by that
point, the decision to not reserve the frame pointer has been frozen
in place. And without a frame pointer, stack realignment is not
possible. So, canRealignStack() returns false, and
needsStackRealignment() then returns false, assuming everyone can just
go on their merry way assuming the alignment requirements were
probably just suggestions after-all. Sigh...)
Differential Revision: http://reviews.llvm.org/D12208
llvm-svn: 245668
To properly handle this, define the *a instructions as separate
instruction classes by refactoring the LoadA and StoreA multiclasses.
Move the instruction tests into the sparcv9 file to test the difference.
llvm-svn: 245360
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
The LDD/STD instructions can load/store a 64bit quantity from/to
memory to/from a consecutive even/odd pair of (32-bit) registers. They
are part of SparcV8, and also present in SparcV9. (Although deprecated
there, as you can store 64bits in one register).
As recommended on llvmdev in the thread "How to enable use of 64bit
load/store for 32bit architecture" from Apr 2015, I've modeled the
64-bit load/store operations as working on a v2i32 type, rather than
making i64 a legal type, but with few legal operations. The latter
does not (currently) work, as there is much code in llvm which assumes
that if i64 is legal, operations like "add" will actually work on it.
The same assumption does not hold for v2i32 -- for vector types, it is
workable to support only load/store, and expand everything else.
This patch:
- Adds a new register class, IntPair, for even/odd pairs of registers.
- Modifies the list of reserved registers, the stack spilling code,
and register copying code to support the IntPair register class.
- Adds support in AsmParser. (note that in asm text, you write the
name of the first register of the pair only. So the parser has to
morph the single register into the equivalent paired register).
- Adds the new instructions themselves (LDD/STD/LDDA/STDA).
- Hooks up the instructions and registers as a vector type v2i32. Adds
custom legalizer to transform i64 load/stores into v2i32 load/stores
and bitcasts, so that the new instructions can actually be
generated, and marks all operations other than load/store on v2i32
as needing to be expanded.
- Copies the unfortunate SelectInlineAsm hack from ARMISelDAGToDAG.
This hack undoes the transformation of i64 operands into two
arbitrarily-allocated separate i32 registers in
SelectionDAGBuilder. and instead passes them in a single
IntPair. (Arbitrarily allocated registers are not useful, asm code
expects to be receiving a pair, which can be passed to ldd/std.)
Also adds a bunch of test cases covering all the bugs I've added along
the way.
Differential Revision: http://reviews.llvm.org/D8713
llvm-svn: 244484
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.
clang and driver changes in http://reviews.llvm.org/D10524
Added -femulated-tls flag to select the emulated TLS model,
which will be used for old targets like Android that do not
support ELF TLS models.
Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.
Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.
TODO: Add proper DIE for emulated TLS variables.
Added new unit tests with emulated TLS.
Differential Revision: http://reviews.llvm.org/D10522
llvm-svn: 243438
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243114
This reverts commit 0f720d984f419c747709462f7476dff962c0bc41.
It breaks clang too badly, I need to prepare a proper patch for clang
first.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243089
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.
This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11103
(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243083
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
This patch is quite boring overall, except for some uglyness in
ASMPrinter which has a getDataLayout function but has some clients
that use it without a Module (llmv-dsymutil, llvm-dwarfdump), so
some methods are taking a DataLayout as parameter.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11090
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242386
We have a detailed def/use lists for every physical register in
MachineRegisterInfo anyway, so there is little use in maintaining an
additional bitset of which ones are used.
Removing it frees us from extra book keeping. This simplifies
VirtRegMap.
Differential Revision: http://reviews.llvm.org/D10911
llvm-svn: 242173
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
llvm-svn: 242165
Force all creators of `MCSubtargetInfo` to immediately initialize it,
merging the default constructor and the initializer into an initializing
constructor. Besides cleaning up the code a little, this makes it clear
that the initializer is never called again later.
Out-of-tree backends need a trivial change: instead of calling:
auto *X = new MCSubtargetInfo();
InitXYZMCSubtargetInfo(X, ...);
return X;
they should call:
return createXYZMCSubtargetInfoImpl(...);
There's no real functionality change here.
llvm-svn: 241957
Summary:
Remove empty subclass in the process.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren, ted
Differential Revision: http://reviews.llvm.org/D11045
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241780
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11042
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241779
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
- Implement copying ASR to/from GPR regs.
- Mark ASRs as non-allocatable, so it won't try to arbitrarily use
them inappropriately.
- Instead of inserting explicit WRASR/RDASR nodes in the MUL/DIV
routines, just do normal register copies.
- Also...mark div as using Y, not just writing it.
Added a test case with some code which previously died with an
assertion failure (with -O0), or produced wrong code (otherwise).
(Third time's the charm?)
Differential Revision: http://reviews.llvm.org/D10401
llvm-svn: 241686
Summary:
This concludes the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
At this point, the StringRef-form of GNU Triples should only be used in the
public API (including IR serialization) and a couple objects that directly
interact with the API (most notably the Module class). The next step is to
replace these Triple objects with the TargetTuple object that will represent
our authoratative/unambiguous internal equivalent to GNU Triples.
Reviewers: rengolin
Subscribers: llvm-commits, jholewinski, ted, rengolin
Differential Revision: http://reviews.llvm.org/D10962
llvm-svn: 241472
These are mostly from the chart in the SparcV8 spec, section "A.3
Synthetic Instructions".
Differential Revision: http://reviews.llvm.org/D9834
llvm-svn: 241461