This time, the issue is that we weren't accounting for the possibility that
aligned DPRs could have been stored after the final "push" in a prologue. When
that happened we effectively moved a "sub sp, #N" from below the aligned stores
to above them, and everything went to pot.
To make it worse, I'd actually committed something testing that we produced
wrong code, so the test update is tiny.
llvm-svn: 248437
With subregister liveness enabled we can detect the case where only
parts of a register are live in, this is expressed as a 32bit lanemask.
The current code only keeps registers in the live-in list and therefore
enumerated all subregisters affected by the lanemask. This turned out to
be too conservative as the subregister may also cover additional parts
of the lanemask which are not live. Expressing a given lanemask by
enumerating a minimum set of subregisters is computationally expensive
so the best solution is to simply change the live-in list to store the
lanemasks as well. This will reduce memory usage for targets using
subregister liveness and slightly increase it for other targets
Differential Revision: http://reviews.llvm.org/D12442
llvm-svn: 247171
function.
This was the same as getFrameIndexReference, but without the FrameReg
output.
Differential Revision: http://reviews.llvm.org/D12042
llvm-svn: 245148
This is the first step toward supporting shrink-wrapping for this target.
The changes could be summarized by these items:
- Expand the tail-call return as part of the expand pseudo pass.
- Get rid of the assumptions that the epilogue is the exit block:
* Do not assume which registers are free in the epilogue. (This indirectly
improve the lowering of the code for the segmented stacks, see the test
cases.)
* Take into account that the basic block can be empty.
Related to <rdar://problem/20821730>
llvm-svn: 242714
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
llvm-svn: 242165
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This is part of the work to remove TargetMachine::resetTargetOptions.
In this patch, instead of updating global variable NoFramePointerElim in
resetTargetOptions, its use in DisableFramePointerElim is replaced with a call
to TargetFrameLowering::noFramePointerElim. This function determines on a
per-function basis if frame pointer elimination should be disabled.
There is no change in functionality except that cl:opt option "disable-fp-elim"
can now override function attribute "no-frame-pointer-elim".
llvm-svn: 238080
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
This makes it more likely that we can use the 16-bit push and pop instructions
on Thumb-2, saving around 4 bytes per function.
Differential Revision: http://reviews.llvm.org/D9165
llvm-svn: 235637
Summary: Looks like new code from [[ http://reviews.llvm.org/rL222057 | rL222057 ]] doesn't account for early `return` in `ARMFrameLowering::emitPrologue`, which leads to loosing `.cfi_def_cfa_offset` directive for functions without stack frame.
Reviewers: echristo, rengolin, asl, t.p.northover
Reviewed By: t.p.northover
Subscribers: llvm-commits, rengolin, aemerson
Differential Revision: http://reviews.llvm.org/D8606
llvm-svn: 234399
The main issue being fixed here is that APCS targets handling a "byval align N"
parameter with N > 4 were miscounting what objects were where on the stack,
leading to FrameLowering setting the frame pointer incorrectly and clobbering
the stack.
But byval handling had grown over many years, and had multiple layers of cruft
trying to compensate for each other and calculate padding correctly. This only
really needs to be done once, in the HandleByVal function. Elsewhere should
just do what it's told by that call.
I also stripped out unnecessary APCS/AAPCS distinctions (now that Clang emits
byvals with the correct C ABI alignment), which simplified HandleByVal.
rdar://20095672
llvm-svn: 231959
Canonicalize access to function attributes to use the simpler API.
getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
=> getFnAttribute(Kind)
getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
=> hasFnAttribute(Kind)
llvm-svn: 229220
Now that -mstack-probe-size is piped through to the backend via the function
attribute as on Windows x86, honour the value to permit handling of non-default
values for stack probes. This is needed /Gs with the clang-cl driver or
-mstack-probe-size with the clang driver when targeting Windows on ARM.
llvm-svn: 227667
This partially fixes PR13007 (ARM CodeGen fails with large stack
alignment): for ARM and Thumb2 targets, but not for Thumb1, as it
seems stack alignment for Thumb1 targets hasn't been supported at
all.
Producing an aligned stack pointer is done by zero-ing out the lower
bits of the stack pointer. The BIC instruction was used for this.
However, the immediate field of the BIC instruction only allows to
encode an immediate that can zero out up to a maximum of the 8 lower
bits. When a larger alignment is requested, a BIC instruction cannot
be used; llvm was silently producing incorrect code in this case.
This commit fixes code generation for large stack aligments by
using the BFC instruction instead, when the BFC instruction is
available. When not, it uses 2 instructions: a right shift,
followed by a left shift to zero out the lower bits.
The lowering of ARM::Int_eh_sjlj_dispatchsetup still has code
that unconditionally uses BIC to realign the stack pointer, so it
very likely has the same problem. However, I wasn't able to
produce a test case for that. This commit adds an assert so that
the compiler will fail the assert instead of silently generating
wrong code if this is ever reached.
llvm-svn: 225446
Debug info marks the first instruction without the FrameSetup flag
as being the end of the function prologue. Any CFI instructions in the
middle of the function prologue would cause debug info to end the prologue
too early and worse, attach the line number of the CFI instruction, which
incidentally is often 0.
llvm-svn: 224294
We use to track quite a few "adjusted" offsets through the FrameLowering code
to account for changes in the prologue instructions as we went and allow the
emission of correct CFA annotations. However, we were missing a couple of cases
and the code was almost impenetrable.
It's easier to just add any stack-adjusting instruction to a list and emit them
together.
llvm-svn: 222057
When we folded the DPR alignment gap into a push, we weren't noting the extra
distance from the beginning of the push to the FP, and so FP ended up pointing
at an incorrect offset.
The .cfi_def_cfa_offset directives are still wrong in this case, but I think
that can be improved by refactoring.
llvm-svn: 222056
We currently try to push an even number of registers to preserve 8-byte
alignment during a function's prologue, but only when the stack alignment is
prcisely 8. Many of the reasons for doing it apply also when that alignment > 8
(the extra store is often free, and can save another stack adjustment, though
less frequently for 16-byte stack alignment).
llvm-svn: 221321
We were making an attempt to do this by adding an extra callee-saved GPR (so
that there was an even number in the list), but when that failed we went ahead
and pushed anyway.
This had a couple of potential issues:
+ The .cfi directives we emit misplaced dN because they were based on
PrologEpilogInserter's calculation.
+ Unaligned stores can be less efficient.
+ Unaligned stores can actually fault (likely only an issue in niche cases,
but possible).
This adds a final explicit stack adjustment if all other options fail, so that
the actual locations of the registers match up with where they should be.
llvm-svn: 221320
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
Darwin prologues save their GPRs in two stages: a narrow push of r0-r7 & lr,
followed by a wide push of the remaining registers if there are any. AAPCS uses
a single push.w instruction.
It turns out that, on average, enough registers get pushed that code is smaller
in the AAPCS prologue, which is a nice property for M-class programmers. They
also have other options available for back-traces, so can hopefully deal with
the fact that FP & LR aren't adjacent in memory.
rdar://problem/15909583
llvm-svn: 209895
Mark up additional instructions which are part of the function prologue as
MachineFrameSetup. These instructions are part of the function prologue,
emitted by the PEI pass to setup the stack for use in the activating frame.
llvm-svn: 208153
The ARM::BLX instruction is an ARM mode instruction. The Windows on ARM target
is limited to Thumb instructions. Correctly use the thumb mode tBLXr
instruction. This would manifest as an errant write into the object file as the
instruction is 4-bytes in length rather than 2. The result would be a corrupted
object file that would eventually result in an executable that would crash at
runtime.
llvm-svn: 208152
remove it from the list of unspilled registers. Otherwise the following
attempt to keep the stack aligned by picking an extra GPR register to
spill will not work as it picks up r11.
llvm-svn: 208129
This fixes the memory leak introduced with the initial addition of support for
WoA stack probing. Now that the pseudo-instruction expansion can handle an
external symbol, use that to generate the load which simplifies the logic as
well as avoids the memory leak.
llvm-svn: 207737
This introduces the stack lowering emission of the stack probe function for
Windows on ARM. The stack on Windows on ARM is a dynamically paged stack where
any page allocation which crosses a page boundary of the following guard page
will cause a page fault. This page fault must be handled by the kernel to
ensure that the page is faulted in. If this does not occur and a write access
any memory beyond that, the page fault will go unserviced, resulting in an
abnormal program termination.
The watermark for the stack probe appears to be at 4080 bytes (for
accommodating the stack guard canaries and stack alignment) when SSP is
enabled. Otherwise, the stack probe is emitted on the page size boundary of
4096 bytes.
llvm-svn: 207615
When the list of VFP registers to be saved was non-contiguous (so multiple
vpush/vpop instructions were needed) these were being ordered oddly, as in:
vpush {d8, d9}
vpush {d11}
This led to the layout in memory being [d11, d8, d9] which is ugly and doesn't
match the CFI_INSTRUCTIONs we're generating either (so Dwarf info would be
broken).
This switches the order of vpush/vpop (in both prologue and epilogue,
obviously) so that the Dwarf locations are correct again.
rdar://problem/16264856
llvm-svn: 203655
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204
The ARM backend has been using most of the MachO related subtarget
checks almost interchangeably, and since the only target it's had to
run on has been IOS (which is all three of MachO, Darwin and IOS) it's
worked out OK so far.
But we'd like to support embedded targets under the "*-*-none-macho"
triple, which means everything starts falling apart and inconsistent
behaviours emerge.
This patch should pick a reasonably sensible set of behaviours for the
new triple (and any others that come along, with luck). Some choices
were debatable (notably FP == r7 or r11), but we can revisit those
later when deficiencies become apparent.
llvm-svn: 198617
When trying to eliminate an "sub sp, sp, #N" instruction by folding
it into an existing push/pop using dummy registers, we need to account
for the fact that this might affect precisely how "fp" gets set in the
prologue.
We were attempting this, but assuming that *whenever* we performed a
fold it would make a difference. This is false, for example, in:
push {r4, r7, lr}
add fp, sp, #4
vpush {d8}
sub sp, sp, #8
we can fold the "sub" into the "vpush", forming "vpush {d7, d8}".
However, in that case the "add fp" instruction mustn't change, which
we were getting wrong before.
Should fix PR18160.
llvm-svn: 196725