Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
This removes the isPow2SDivCheap() query, as it is not currently used in
any meaningful way. isIntDivCheap() no longer relies on a state variable
(as all in-tree target set it to false), but the interface allows querying
based on the type optimization level.
NFC.
Differential Revision: http://reviews.llvm.org/D12082
llvm-svn: 245430
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
Bonus change to remove emacs major mode marker from SystemZMachineFunctionInfo.cpp because emacs already knows it's C++ from the extension. Also fix typo "appeary" in AMDGPUMCAsmInfo.h.
llvm-svn: 243585
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
This patch is quite boring overall, except for some uglyness in
ASMPrinter which has a getDataLayout function but has some clients
that use it without a Module (llmv-dsymutil, llvm-dwarfdump), so
some methods are taking a DataLayout as parameter.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11090
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242386
Force all creators of `MCSubtargetInfo` to immediately initialize it,
merging the default constructor and the initializer into an initializing
constructor. Besides cleaning up the code a little, this makes it clear
that the initializer is never called again later.
Out-of-tree backends need a trivial change: instead of calling:
auto *X = new MCSubtargetInfo();
InitXYZMCSubtargetInfo(X, ...);
return X;
they should call:
return createXYZMCSubtargetInfoImpl(...);
There's no real functionality change here.
llvm-svn: 241957
Summary:
The target frame lowering's concrete type is always known in RegisterInfo, yet it's only sometimes devirtualized through a static_cast. This change adds an auto-generated static function <Target>GenRegisterInfo::getFrameLowering(const MachineFunction &MF) which does this devirtualization, and uses this function in all targets which can.
This change was suggested by sunfish in D11070 for WebAssembly, I figure that I may as well improve the other targets while I'm here.
Subscribers: sunfish, ted, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11093
llvm-svn: 241921
Summary:
Remove empty subclass in the process.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren, ted
Differential Revision: http://reviews.llvm.org/D11045
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241780
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
Summary:
This concludes the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
At this point, the StringRef-form of GNU Triples should only be used in the
public API (including IR serialization) and a couple objects that directly
interact with the API (most notably the Module class). The next step is to
replace these Triple objects with the TargetTuple object that will represent
our authoratative/unambiguous internal equivalent to GNU Triples.
Reviewers: rengolin
Subscribers: llvm-commits, jholewinski, ted, rengolin
Differential Revision: http://reviews.llvm.org/D10962
llvm-svn: 241472
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Summary:
For the moment, TargetMachine::getTargetTriple() still returns a StringRef.
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: ted, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10362
llvm-svn: 239554
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, ted, jfb, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10311
llvm-svn: 239467
Summary:
This is the first of several patches to eliminate StringRef forms of GNU
triples from the internals of LLVM. After this is complete, GNU triples
will be replaced by a more authoratitive representation in the form of
an LLVM TargetTuple.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: ted, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10236
llvm-svn: 239036
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977
Summary:
MSP430 doesn't seem to have any additional constraints. Therefore remove
the target hook.
No functional change intended.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8208
llvm-svn: 235003
per-function subtarget.
Currently, code-gen passes the default or generic subtarget to the constructors
of MCInstPrinter subclasses (see LLVMTargetMachine::addPassesToEmitFile), which
enables some targets (AArch64, ARM, and X86) to change their instprinter's
behavior based on the subtarget feature bits. Since the backend can now use
different subtargets for each function, instprinter has to be changed to use the
per-function subtarget rather than the default subtarget.
This patch takes the first step towards enabling instprinter to change its
behavior based on the per-function subtarget. It adds a bit "PassSubtarget" to
AsmWriter which tells table-gen to pass a reference to MCSubtargetInfo to the
various print methods table-gen auto-generates.
I will follow up with changes to instprinters of AArch64, ARM, and X86.
llvm-svn: 233411
TargetMachine::getSubtargetImpl routines.
This keeps the target independent code free of bare subtarget
calls while the remainder of the backends are migrated, or not
if they don't wish to support per-function subtargets as would
be needed for function multiversioning or LTO of disparate
cpu subarchitecture types, e.g.
clang -msse4.2 -c foo.c -emit-llvm -o foo.bc
clang -c bar.c -emit-llvm -o bar.bc
llvm-link foo.bc bar.bc -o baz.bc
llc baz.bc
and get appropriate code for what the command lines requested.
llvm-svn: 232885
Summary:
This is instead of doing this in target independent code and is the last
non-functional change before targets begin to distinguish between
different memory constraints when selecting code for the ISD::INLINEASM
node.
Next, each target will individually move away from the idea that all
memory constraints behave like 'm'.
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8173
llvm-svn: 232373
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break
anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate
Constraint_* values.
PR22883 was caused the matching operands copying the whole of the operand flags
for the matched operand. This included the constraint id which needed to be
replaced with the operand number. This has been fixed with a conversion
function. Following on from this, matching operands also used the operand
number as the constraint id. This has been fixed by looking up the matched
operand and taking it from there.
llvm-svn: 232165
This (r232027) has caused PR22883; so it seems those bits might be used by
something else after all. Reverting until we can figure out what else to do.
Original commit message:
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate Constraint_*
values.
llvm-svn: 232093