If we replace one call-site with another, be sure to move over any
operand bundles that lingered on the old call-site.
This fixes PR26036.
llvm-svn: 256912
Summary:
In order to avoid calling pow function we generate repeated fmul when n is a
positive or negative whole number.
For each exponent we pre-compute Addition Chains in order to minimize the no.
of fmuls.
Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
We pre-compute addition chains for exponents upto 32 (which results in a max of
7 fmuls).
For eg:
4 = 2+2
5 = 2+3
6 = 3+3 and so on
Hence,
pow(x, 4.0) ==> y = fmul x, x
x = fmul y, y
ret x
For negative exponents, we simply compute the reciprocal of the final result.
Note: This transformation is only enabled under fast-math.
Patch by Mandeep Singh Grang <mgrang@codeaurora.org>
Reviewers: weimingz, majnemer, escha, davide, scanon, joerg
Subscribers: probinson, escha, llvm-commits
Differential Revision: http://reviews.llvm.org/D13994
llvm-svn: 254776
This one is enabled only under -ffast-math. There are cases where the
difference between the value computed and the correct value is huge
even for ffast-math, e.g. as Steven pointed out:
x = -1, y = -4
log(pow(-1), 4) = 0
4*log(-1) = NaN
I checked what GCC does and apparently they do the same optimization
(which result in the dramatic difference). Future work might try to
make this (slightly) less worse.
Differential Revision: http://reviews.llvm.org/D14400
llvm-svn: 254263
Summary:
Followed the guidelines in:
http://llvm.org/docs/CodingStandards.html#include-style
However, I noticed that uppercase named headers come before lowercase ones
throughout the codebase. So kept them as is.
Patch by Mandeep Singh Grang <mgrang@codeaurora.org>
Reviewers: majnemer, davide, jmolloy, atrick
Subscribers: sanjoy
Differential Revision: http://reviews.llvm.org/D14939
llvm-svn: 254005
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
Continuing the work from last week to remove implicit ilist iterator
conversions. First related commit was probably r249767, with some more
motivation in r249925. This edition gets LLVMTransformUtils compiling
without the implicit conversions.
No functional change intended.
llvm-svn: 250142
When trying to optimize fortified library functions use the right
location to insert new instructions in order to preserve correct
def-use order.
This fixes an issue where a misplaced instruction definition would
happen to be *after* one of its use after a RAUW, forming invalid IR.
This behavior was introduced by r227250.
Differential Revision: http://reviews.llvm.org/D13301
rdar://problem/22802369
llvm-svn: 249092
If we can ignore NaNs, fmin/fmax libcalls can become compare and select
(this is what we turn std::min / std::max into).
This IR should then be optimized in the backend to whatever is best for
any given target. Eg, x86 can use minss/maxss instructions.
This should solve PR24314:
https://llvm.org/bugs/show_bug.cgi?id=24314
Differential Revision: http://reviews.llvm.org/D11866
llvm-svn: 245187
If <src> is non-zero we can safely set the flag to true, and this
results in less code generated for, e.g. ffs(x) + 1 on FreeBSD.
Thanks to majnemer for suggesting the fix and reviewing.
Code generated before the patch was applied:
0: 0f bc c7 bsf %edi,%eax
3: b9 20 00 00 00 mov $0x20,%ecx
8: 0f 45 c8 cmovne %eax,%ecx
b: 83 c1 02 add $0x2,%ecx
e: b8 01 00 00 00 mov $0x1,%eax
13: 85 ff test %edi,%edi
15: 0f 45 c1 cmovne %ecx,%eax
18: c3 retq
Code generated after the patch was applied:
0: 0f bc cf bsf %edi,%ecx
3: 83 c1 02 add $0x2,%ecx
6: 85 ff test %edi,%edi
8: b8 01 00 00 00 mov $0x1,%eax
d: 0f 45 c1 cmovne %ecx,%eax
10: c3 retq
It seems we can still use cmove and save another 'test' instruction, but
that can be tackled separately.
Differential Revision: http://reviews.llvm.org/D11989
llvm-svn: 244947
Now that Intrinsic::ID is a typed enum, we can forward declare it and so return it from this method.
This updates all users which were either using an unsigned to store it, or had a now unnecessary cast.
llvm-svn: 237810
We used to do this before refactorings around r225640.
Some clang users checked for _chk libcall availability using:
__has_builtin(__builtin___memcpy_chk)
When compiling with -fno-builtin, this is always true.
When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
end up with fortified libcalls, which isn't acceptable in a freestanding
environment which only provides their non-fortified counterparts.
Until we change clang and/or teach external users to check for availability
differently, disregard the "nobuiltin" attribute and TLI::has.
Workaround for PR23093.
llvm-svn: 233776
strchr("123!", C) != nullptr is a common pattern to check if C is one
of 1, 2, 3 or !. If the largest element of the string is smaller than
the target's register size we can easily create a bitfield and just
do a simple test for set membership.
int foo(char C) { return strchr("123!", C) != nullptr; } now becomes
cmpl $64, %edi ## range check
sbbb %al, %al
movabsq $0xE000200000001, %rcx
btq %rdi, %rcx ## bit test
sbbb %cl, %cl
andb %al, %cl ## and the two conditions
andb $1, %cl
movzbl %cl, %eax ## returning an int
ret
(imho the backend should expand this into a series of branches, but
that's a different story)
The code is currently limited to bit fields that fit in a register, so
usually 64 or 32 bits. Sadly, this misses anything using alpha chars
or {}. This could be fixed by just emitting a i128 bit field, but that
can generate really ugly code so we have to find a better way. To some
degree this is also recreating switch lowering logic, but we can't
simply emit a switch instruction and thus change the CFG within
instcombine.
llvm-svn: 232902
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
a more direct approach: a type-erased glorified function pointer. Now we
can pass a function pointer into this for the easy case and we can even
pass a lambda into it in the interesting case in the instruction
combiner.
I'll be using this shortly to simplify the interfaces to InstCombiner,
but this helps pave the way and seems like a better design for the
libcall simplifier utility.
llvm-svn: 226640
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.
This is in preparation for porting this analysis to the new pass
manager.
No functionality changed, and updates inbound for Clang and Polly.
llvm-svn: 226078
It turns out, all callsites of the simplifier are guarded by a check for
CallInst::getCalledFunction (i.e., to make sure the callee is direct).
This check wasn't done when trying to further optimize a simplified fortified
libcall, introduced by a refactoring in r225640.
Fix that, add a testcase, and document the requirement.
llvm-svn: 225895
Put them in a separate function, so we can reuse them to further
simplify fortified libcalls as well.
Differential Revision: http://reviews.llvm.org/D6540
llvm-svn: 225639
The checks are the same for fortified counterparts to the libcalls, so
we might as well do them in a single place.
Differential Revision: http://reviews.llvm.org/D6539
llvm-svn: 225638
This allows cases like float x; fmin(1.0, x); to be optimized to fminf(1.0f, x);
rdar://19049359
Differential Revision: http://reviews.llvm.org/D6496
llvm-svn: 223270
Windows defines NULL to 0, which when used as an argument to a variadic
function, is not a null pointer constant. As a result, Clang's
-Wsentinel fires on this code. Using '0' would be wrong on most 64-bit
platforms, but both MSVC and Clang make it work on Windows. Sidestep the
issue with nullptr.
llvm-svn: 221940
One of them (__memcpy_chk) was already there, the others were checked
by comparing function names.
Note that the fortified libfuncs are now part of TLI, but are always
available, because they aren't generated, only optimized into the
non-checking versions.
Differential Revision: http://reviews.llvm.org/D6179
llvm-svn: 221817
This patch removes a chunk of special case logic for folding
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.
No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.
I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.
Differential Revision: http://reviews.llvm.org/D5919
llvm-svn: 220514
When a call to a double-precision libm function has fast-math semantics
(via function attribute for now because there is no IR-level FMF on calls),
we can avoid fpext/fptrunc operations and use the float version of the call
if the input and output are both float.
We already do this optimization using a command-line option; this patch just
adds the ability for fast-math to use the existing functionality.
I moved the cl::opt from InstructionCombining into SimplifyLibCalls because
it's only ever used internally to that class.
Modified the existing test cases to use the unsafe-fp-math attribute rather
than repeating all tests.
This patch should solve: http://llvm.org/bugs/show_bug.cgi?id=17850
Differential Revision: http://reviews.llvm.org/D5893
llvm-svn: 220390
If a square root call has an FP multiplication argument that can be reassociated,
then we can hoist a repeated factor out of the square root call and into a fabs().
In the simplest case, this:
y = sqrt(x * x);
becomes this:
y = fabs(x);
This patch relies on an earlier optimization in instcombine or reassociate to put the
multiplication tree into a canonical form, so we don't have to search over
every permutation of the multiplication tree.
Because there are no IR-level FastMathFlags for intrinsics (PR21290), we have to
use function-level attributes to do this optimization. This needs to be fixed
for both the intrinsics and in the backend.
Differential Revision: http://reviews.llvm.org/D5787
llvm-svn: 219944
Eliminate library calls and intrinsic calls to fabs when the input
is a squared value.
Note that no unsafe-math / fast-math assumptions are needed for
this optimization.
Differential Revision: http://reviews.llvm.org/D5777
llvm-svn: 219717
Summary:
This adds two new diagnostics: -pass-remarks-missed and
-pass-remarks-analysis. They take the same values as -pass-remarks but
are intended to be triggered in different contexts.
-pass-remarks-missed is used by LLVMContext::emitOptimizationRemarkMissed,
which passes call when they tried to apply a transformation but
couldn't.
-pass-remarks-analysis is used by LLVMContext::emitOptimizationRemarkAnalysis,
which passes call when they want to inform the user about analysis
results.
The patch also:
1- Adds support in the inliner for the two new remarks and a
test case.
2- Moves emitOptimizationRemark* functions to the llvm namespace.
3- Adds an LLVMContext argument instead of making them member functions
of LLVMContext.
Reviewers: qcolombet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3682
llvm-svn: 209442
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
llvm-svn: 201827
Add the missing transformation strchr(p, 0) -> p + strlen(p) to SimplifyLibCalls
and remove the ToDo comment.
Reviewer: Duncan P.N. Exan Smith
llvm-svn: 200736
Generally speaking, control flow paths with error reporting calls are cold.
So far, error reporting calls are calls to perror and calls to fprintf,
fwrite, etc. with stderr as the stream. This can be extended in the future.
The primary motivation is to improve block placement (the cold attribute
affects the static branch prediction heuristics).
llvm-svn: 194943
This adds an SimplifyLibCalls case which converts the special __sinpi and
__cospi (float & double variants) into a __sincospi_stret where appropriate to
remove duplicated work.
Patch by Tim Northover
llvm-svn: 193943
The existing code missed some edge cases when e.g. we're going to emit sqrtf but
only the availability of sqrt was checked. This happens on odd platforms like
windows.
llvm-svn: 189724
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin,
rdar://problem/13727199
llvm-svn: 185049
This commit completely removes what is left of the simplify-libcalls
pass. All of the functionality has now been migrated to the instcombine
and functionattrs passes. The following C API functions are now NOPs:
1. LLVMAddSimplifyLibCallsPass
2. LLVMPassManagerBuilderSetDisableSimplifyLibCalls
llvm-svn: 184459
Nadav reported a performance regression due to the work I did to
merge the library call simplifier into instcombine [1]. The issue
is that a new LibCallSimplifier object is being created whenever
InstCombiner::runOnFunction is called. Every time a LibCallSimplifier
object is used to optimize a call it creates a hash table to map from
a function name to an object that optimizes functions of that name.
For short-lived LibCallSimplifier instances this is quite inefficient.
Especially for cases where no calls are actually simplified.
This patch fixes the issue by dropping the hash table and implementing
an explicit lookup function to correlate the function name to the object
that optimizes functions of that name. This avoids the cost of always
building and destroying the hash table in cases where the LibCallSimplifier
object is short-lived and avoids the cost of building the table when no
simplifications are actually preformed.
On a benchmark containing 100,000 calls where none of them are simplified
I noticed a 30% speedup. On a benchmark containing 100,000 calls where
all of them are simplified I noticed an 8% speedup.
[1] http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130304/167639.html
llvm-svn: 176840
The 'nobuiltin' attribute is applied to call sites to indicate that LLVM should
not treat the callee function as a built-in function. I.e., it shouldn't try to
replace that function with different code.
llvm-svn: 175835