Summary:
Due to a recent (but retroactive) C++ rule change, only sufficiently
C-compatible classes are permitted to be given a typedef name for
linkage purposes. Add an enabled-by-default warning for these cases, and
rephrase our existing error for the case where we encounter the typedef
name for linkage after we've already computed and used a wrong linkage
in terms of the new rule.
Reviewers: rjmccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74103
constant initialization.
Removing this zeroing regressed our code generation in a few cases, also
fixed here. We now compute whether a variable has constant destruction
even if it doesn't have a constant initializer, by trying to destroy a
default-initialized value, and skip emitting a trivial default
constructor for a variable even if it has non-trivial (but perhaps
constant) destruction.
We would incorrectly check whether the type-constraint had already been initialized, causing us
to ignore the invented template type constraints entirely.
Also, TemplateParameterList would store incorrect information about invented type parameters
when it observed them before their type-constraint was initialized, so we recreate it after
initializing the function type of an abbreviated template.
We did not have a CXXThisScope around constraint checking of functions and
function template specializations, causing a crash when checking a constraint
that had a 'this' (bug 44689).
Recommit after fixing test.
We did not have a CXXThisScope around constraint checking of functions and
function template specializations, causing a crash when checking a constraint
that had a 'this' (bug 44689)
We previously instantiated type-constraints of template type parameters along with the type parameter itself,
this caused problems when the type-constraints created by abbreviated templates refreneced other parameters
in the abbreviated templates.
When encountering a template type parameter with a type constraint, if it is implicit, delay instantiation of
the type-constraint until the function parameter which created the invented template type parameter is
instantiated.
Reland after fixing bug caused by another flow reaching SubstParmVarDecl and instantiating the TypeConstraint
a second time.
We previously instantiated type-constraints of template type parameters along with the type parameter itself,
this caused problems when the type-constraints created by abbreviated templates refreneced other parameters
in the abbreviated templates.
When encountering a template type parameter with a type constraint, if it is implicit, delay instantiation of
the type-constraint until the function parameter which created the invented template type parameter is
instantiated.
We previously would not correctly for the initial parameter mapping for variadic template parameters in Concepts.
Testing this lead to the discovery that with the normalization process we would need to substitute into already-substituted-into
template arguments, which means we need to add NonTypeTemplateParmExpr support to TemplateInstantiator.
We do that by substituting into the replacement and the type separately, and then re-checking the expression against the NTTP
with the new type, in order to form any new required implicit casts (for cases where the type of the NTTP was dependent).
We would previously try to evaluate atomic constraints of non-template functions as-is,
and since they are now unevaluated at first, this would cause incorrect evaluation (bugs #44657, #44656).
Substitute into atomic constraints of non-template functions as we would atomic constraints
of template functions, in order to rebuild the expressions in a constant-evaluated context.
As per P1980R0, constraint expressions are unevaluated operands, and their constituent atomic
constraints only become constant evaluated during satisfaction checking.
Change the evaluation context during parsing and instantiation of constraints to unevaluated.
Now with concepts support merged and mostly complete, we do not need -fconcepts-ts
(which was also misleading as we were not implementing the TS) and can enable
concepts features under C++2a. A warning will be generated if users still attempt
to use -fconcepts-ts.
Proper ExpressionEvaluationContext were not being entered when instantiating constraint
expressions, which caused assertion failures in certain cases, including bug #44614.
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after fixing MSAN failures caused by incomplete initialization of AutoTypeLocs in TypeSpecLocFiller.
Differential Revision: https://reviews.llvm.org/D65042
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after incorrect check in NonTypeTemplateParmDecl broke lldb.
Differential Revision: https://reviews.llvm.org/D65042
Add a simple cache for constraint satisfaction results. Whether or not this simple caching
would be permitted in final C++2a is currently being discussed but it is required for
acceptable performance so we use it in the meantime, with the possibility of adding some
cache invalidation mechanisms later.
Differential Revision: https://reviews.llvm.org/D72552
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Differential Revision: https://reviews.llvm.org/D65042
a temporary.
We previously failed to materialize a temporary when performing an
implicit conversion to a reference type, resulting in our thinking the
argument was a value rather than a reference in some cases.
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
A TemplateIdAnnotation represents only a template-id, not a
nested-name-specifier plus a template-id. Don't make a redundant copy of
the CXXScopeSpec and store it on the template-id annotation.
This slightly improves error recovery by more properly handling the case
where we would form an invalid CXXScopeSpec while parsing a typename
specifier, instead of accidentally putting the token stream into a
broken "annot_template_id with a scope specifier, but with no preceding
annot_cxxscope token" state.
expanded by the deduced pack.
We recently started also deducing the arity of separately-expanded packs
that are merely mentioned within the pack in question, which is
incorrect.
Add support for type-constraints in template type parameters.
Also add support for template type parameters as pack expansions (where the type constraint can now contain an unexpanded parameter pack).
Differential Revision: https://reviews.llvm.org/D44352
Function trailing requires clauses now parsed, supported in overload resolution and when calling, referencing and taking the address of functions or function templates.
Differential Revision: https://reviews.llvm.org/D43357
pack expansion.
Previously, if all parameter / argument pairs for a pack expansion
deduction were non-deduced contexts, we would not deduce the arity of
the pack, and could end up deducing a different arity (leading to
failures during substitution) or defaulting to an arity of 0 (leading to
bad diagnostics about passing the wrong number of arguments to a
variadic function). Instead, we now always deduce the arity for all
involved packs any time we deduce a pack expansion.
This will result in less substitution happening in some cases, which
could avoid non-SFINAEable errors, and should generally improve the
quality of diagnostics when passing initializer lists to variadic
functions.
Summary:
This adds parsing of the qualifiers __ptr32, __ptr64, __sptr, and __uptr and
lowers them to the corresponding address space pointer for 32-bit and 64-bit pointers.
(32/64-bit pointers added in https://reviews.llvm.org/D69639)
A large part of this patch is making these pointers ignore the address space
when doing things like overloading and casting.
https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: rnk, rsmith
Subscribers: jholewinski, jvesely, nhaehnle, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71039
Disable the instantiation-depth-default.cpp test on NetBSD since it
requires more stack space than we have by default on NetBSD.
Differential Revision: https://reviews.llvm.org/D71419
forming non-type template parameter values.
This reverts commit 93cc9dddd8,
which reverted commit 11d1052785.
We now always form `&x` when forming a pointer to a function rather than
trying to use function-to-pointer decay. This matches the behavior of
the old code in this case, but not the intent as described by the
comments.
This reverts commit 11d1052785.
This change is problematic with function pointer template parameters. For
example, building libcxxabi with futexes (-D_LIBCXXABI_USE_FUTEX) produces this
diagnostic:
In file included from .../llvm-project/libcxxabi/src/cxa_guard.cpp:15:
.../llvm-project/libcxxabi/src/cxa_guard_impl.h:416:54: error: address of function 'PlatformThreadID' will always evaluate to 'true' [-Werror,-Wpointer-bool-conversion]
has_thread_id_support(this->thread_id_address && GetThreadIDArg),
~~ ^~~~~~~~~~~~~~
.../llvm-project/libcxxabi/src/cxa_guard.cpp:38:26: note: in instantiation of member function '__cxxabiv1::(anonymous namespace)::InitByteFutex<&__cxxabiv1::(anonymous namespace)::PlatformFutexWait, &__cxxabiv1::(anonymous namespace)::PlatformFutexWake, &__cxxabiv1::(anonymous namespace)::PlatformThreadID>::InitByteFutex' requested here
SelectedImplementation imp(raw_guard_object);
^
.../llvm-project/libcxxabi/src/cxa_guard_impl.h:416:54: note: prefix with the address-of operator to silence this warning
has_thread_id_support(this->thread_id_address && GetThreadIDArg),
^
&
1 error generated.
The diagnostic is incorrect: adding the address-of operator also fails ("cannot
take the address of an rvalue of type 'uint32_t (*)()' (aka 'unsigned int
(*)()')").
This patch reapplies commit 759948467e. Patch was reverted due to a
clang-tidy test fail on Windows. The test has been modified. There
are no additional code changes.
Patch was tested with ninja check-all on Windows and Linux.
Summary of code changes:
Clang currently crashes for switch statements inside a template when the
condition is a non-integer field member because contextual implicit
conversion is skipped when parsing the condition. This conversion is
however later checked in an assert when the case statement is handled.
The conversion is skipped when parsing the condition because
the field member is set as type-dependent based on its containing class.
This patch sets the type dependency based on the field's type instead.
This patch fixes Bug 40982.
This patch reapplies commit 76945821b9. The first version broke
buildbots due to clang-tidy test fails. The fails are because some
errors in templates are now diagnosed earlier (does not wait till
instantiation). I have modified the tests to add checks for these
diagnostics/prevent these diagnostics. There are no additional code
changes.
Summary of code changes:
Clang currently crashes for switch statements inside a template when the
condition is a non-integer field member because contextual implicit
conversion is skipped when parsing the condition. This conversion is
however later checked in an assert when the case statement is handled.
The conversion is skipped when parsing the condition because
the field member is set as type-dependent based on its containing class.
This patch sets the type dependency based on the field's type instead.
This patch fixes Bug 40982.
Reviewers: rnk, gribozavr2
Patch by: Elizabeth Andrews (eandrews)
Differential revision: https://reviews.llvm.org/D69950
The issue was introduced by D33189 which fixed PR33189.
Fixes PR38671: "destructor cannot be declared as a template" leads to segfault in Sema::LookupSpecialMember
Differential Revision: https://reviews.llvm.org/D69225
parameter type.
We were both failing to decay the array type to a pointer and failing to
remove the top-level cv-qualifications. Fix this by decaying array
parameters even if the parameter type is dependent.
llvm-svn: 374496
We previously failed to treat an array with an instantiation-dependent
but not value-dependent bound as being an instantiation-dependent type.
We now track the array bound expression as part of a constant array type
if it's an instantiation-dependent expression.
llvm-svn: 373685