This is a follow-up to r331272.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
https://reviews.llvm.org/D46290
llvm-svn: 331275
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
As discussed in D45733, we want to do this in InstCombine.
https://rise4fun.com/Alive/LGk
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: chandlerc, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D45867
llvm-svn: 331205
Summary:
Masked merge has a pattern of: `((x ^ y) & M) ^ y`.
But, there is no difference between `((x ^ y) & M) ^ y` and `((x ^ y) & ~M) ^ x`,
We should canonicalize the pattern to non-inverted mask.
https://rise4fun.com/Alive/Yol
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45664
llvm-svn: 331112
Summary:
Currently, we
1. match `LHS` matcher to the `first` operand of binary operator,
2. and then match `RHS` matcher to the `second` operand of binary operator.
If that does not match, we swap the `LHS` and `RHS` matchers:
1. match `RHS` matcher to the `first` operand of binary operator,
2. and then match `LHS` matcher to the `second` operand of binary operator.
This works ok.
But it complicates writing of commutative matchers, where one would like to match
(`m_Value()`) the value on one side, and use (`m_Specific()`) it on the other side.
This is additionally complicated by the fact that `m_Specific()` stores the `Value *`,
not `Value **`, so it won't work at all out of the box.
The last problem is trivially solved by adding a new `m_c_Specific()` that stores the
`Value **`, not `Value *`. I'm choosing to add a new matcher, not change the existing
one because i guess all the current users are ok with existing behavior,
and this additional pointer indirection may have performance drawbacks.
Also, i'm storing pointer, not reference, because for some mysterious-to-me reason
it did not work with the reference.
The first one appears trivial, too.
Currently, we
1. match `LHS` matcher to the `first` operand of binary operator,
2. and then match `RHS` matcher to the `second` operand of binary operator.
If that does not match, we swap the ~~`LHS` and `RHS` matchers~~ **operands**:
1. match ~~`RHS`~~ **`LHS`** matcher to the ~~`first`~~ **`second`** operand of binary operator,
2. and then match ~~`LHS`~~ **`RHS`** matcher to the ~~`second`~ **`first`** operand of binary operator.
Surprisingly, `$ ninja check-llvm` still passes with this.
But i expect the bots will disagree..
The motivational unittest is included.
I'd like to use this in D45664.
Reviewers: spatel, craig.topper, arsenm, RKSimon
Reviewed By: craig.topper
Subscribers: xbolva00, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D45828
llvm-svn: 331085
Summary:
Simplify integer add expression X % C0 + (( X / C0 ) % C1) * C0 to
X % (C0 * C1). This is a common pattern seen in code generated by the XLA
GPU backend.
Add test cases for this new optimization.
Patch by Bixia Zheng!
Reviewers: sanjoy
Reviewed By: sanjoy
Subscribers: efriedma, craig.topper, lebedev.ri, llvm-commits, jlebar
Differential Revision: https://reviews.llvm.org/D45976
llvm-svn: 330992
As discussed in D45862, we want to delete parts of
this code because it can create more instructions
than it removes. But we also want to preserve some
folds that are winners, so tidy up what's here to
make splitting the good from bad a bit easier.
llvm-svn: 330841
(notionally Scalar.h is part of libLLVMScalarOpts, so it shouldn't be
included by InstCombine which doesn't/shouldn't need to depend on
ScalarOpts)
llvm-svn: 330669
This is the last step in getting constant pattern matchers to allow
undef elements in constant vectors.
I'm adding a dedicated m_ZeroInt() function and building m_Zero() from
that. In most cases, calling code can be updated to use m_ZeroInt()
directly when there's no need to match pointers, but I'm leaving that
efficiency optimization as a follow-up step because it's not always
clear when that's ok.
There are just enough icmp folds in InstSimplify that can be used for
integer or pointer types, that we probably still want a generic m_Zero()
for those cases. Otherwise, we could eliminate it (and possibly add a
m_NullPtr() as an alias for isa<ConstantPointerNull>()).
We're conservatively returning a full zero vector (zeroinitializer) in
InstSimplify/InstCombine on some of these folds (see diffs in InstSimplify),
but I'm not sure if that's actually necessary in all cases. We may be
able to propagate an undef lane instead. One test where this happens is
marked with 'TODO'.
llvm-svn: 330550
Summary:
When sinking an instruction in InstCombine we now also sink
the DbgInfoIntrinsics that are using the sunken value.
Example)
When sinking the load in this input
bb.X:
%0 = load i64, i64* %start, align 4, !dbg !31
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
br label %for.body
we now also move the dbg.value, like this
bb.X:
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
%0 = load i64, i64* %start, align 4, !dbg !31
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br label %for.body
In the past we haven't moved the dbg.value so we got
bb.X:
tail call void @llvm.dbg.value(metadata i64 %0, ...)
br i1 %cond, label %for.end, label %for.body.lr.ph
for.body.lr.ph:
%0 = load i64, i64* %start, align 4, !dbg !31
br label %for.body
So in the past we got a debug-use before the def of %0.
And that dbg.value was also on the path jumping to %for.end, for
which %0 never was defined.
CodeGenPrepare normally comes to rescue later (when not moving
the dbg.value), since it moves dbg.value instrinsics quite
brutally, without really analysing if it is correct to move
the intrinsic (see PR31878).
So at the moment this patch isn't expected to have much impact,
besides that it is moving the dbg.value already in opt, making
the IR look more sane directly.
This can be seen as a preparation to (hopefully) make it possible
to turn off CodeGenPrepare::placeDbgValues later as a solution
to PR31878.
I also adjusted test/DebugInfo/X86/sdagsplit-1.ll to make the
IR in the test case up-to-date with this behavior in InstCombine.
Reviewers: rnk, vsk, aprantl
Reviewed By: vsk, aprantl
Subscribers: mattd, JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D45425
llvm-svn: 330243
The bitcast may be interfering with other combines or vectorization
as shown in PR16739:
https://bugs.llvm.org/show_bug.cgi?id=16739
Most pointer-related optimizations are probably able to look through
this bitcast, but removing the bitcast shrinks the IR, so it's at
least a size savings.
Differential Revision: https://reviews.llvm.org/D44833
llvm-svn: 330237
Two cleanups:
1. As noted in D45453, we had tests that don't need FMF that were misplaced in the 'fast-math.ll' test file.
2. This removes the final uses of dyn_castFNegVal, so that can be deleted. We use 'match' now.
llvm-svn: 330126
Summary:
In order to get the whole fold as specified in [[ https://bugs.llvm.org/show_bug.cgi?id=6773 | PR6773 ]],
let's first handle the simple straight-forward things.
Let's start with the `and` -> `or` simplification.
The one obvious thing missing here: the constant mask is not handled.
I have an idea how to handle it, but it will require some thinking,
and is not strictly required here, so i've left that for later.
https://rise4fun.com/Alive/Pkmg
Reviewers: spatel, craig.topper, eli.friedman, jingyue
Reviewed By: spatel
Subscribers: llvm-commits
Was reviewed as part of https://reviews.llvm.org/D45631
llvm-svn: 330103
These simplifications were previously enabled only with isFast(), but that
is more restrictive than required. Since r317488, FMF has 'reassoc' to
control these cases at a finer level.
llvm-svn: 330089
Summary:
The fold added in D45108 did not account for the fact that
the and instruction is commutative, and if the mask is a variable,
the mask variable and the fold variable may be swapped.
I have noticed this by accident when looking into [[ https://bugs.llvm.org/show_bug.cgi?id=6773 | PR6773 ]]
This extends/generalizes that fold, so it is handled too.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45539
llvm-svn: 330001
This completes the work started in r329604 and r329605 when we changed clang to no longer use the intrinsics.
We lost some InstCombine SimplifyDemandedBit optimizations through this change as we aren't able to fold 'and', bitcast, shuffle very well.
llvm-svn: 329990
This restores what was lost with rL73243 but without
re-introducing the bug that was present in the old code.
Note that we already have these transforms if the ops are
marked 'fast' (and I assume that's happening somewhere in
the code added with rL170471), but we clearly don't need
all of 'fast' for these transforms.
llvm-svn: 329362
Summary:
This is a fix to PR37005.
Essentially, rL328539 ([InstCombine] reassociate loop invariant GEP chains to enable LICM) contains a bug
whereby it will convert:
%src = getelementptr inbounds i8, i8* %base, <2 x i64> %val
%res = getelementptr inbounds i8, <2 x i8*> %src, i64 %val2
into:
%src = getelementptr inbounds i8, i8* %base, i64 %val2
%res = getelementptr inbounds i8, <2 x i8*> %src, <2 x i64> %val
By swapping the index operands if the GEPs are in a loop, and %val is loop variant while %val2
is loop invariant.
This fix recreates new GEP instructions if the index operand swap would result in the type
of %src changing from vector to scalar, or vice versa.
Reviewers: sebpop, spatel
Reviewed By: sebpop
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45287
llvm-svn: 329331
The tests marked with 'FIXME' require loosening the check
in SimplifyAssociativeOrCommutative() to optimize completely;
that's still checking isFast() in Instruction::isAssociative().
llvm-svn: 329121
Summary:
Folding patterns like:
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%ext = extractelement <4 x i8> %insvec, i32 0
%cond = icmp eq i32 %ext, 0
Combined with existing rules, this allows us to fold patterns like:
%insvec = insertelement <4 x i8> undef, i8 %val, i32 0
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%cond = icmp eq i8 %val, 0
When we construct a splat vector via a shuffle, and bitcast the vector into an integer type for comparison against an integer constant. Then we can simplify the the comparison to compare the splatted value against the integer constant.
Reviewers: spatel, anna, mkazantsev
Reviewed By: spatel
Subscribers: efriedma, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D44997
llvm-svn: 329087
Summary:
The cast simplifications that instcombine does here do not make any
attempt to obey the verifier rules for musttail calls. Therefore we have
to disable them.
Reviewers: efriedma, majnemer, pcc
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D45186
llvm-svn: 329027
This change brings performance of zlib up by 10%. The example below is from a
hot loop in longest_match() from zlib.
do.body:
%cur_match.addr.0 = phi i32 [ %cur_match, %entry ], [ %2, %do.cond ]
%idx.ext = zext i32 %cur_match.addr.0 to i64
%add.ptr = getelementptr inbounds i8, i8* %win, i64 %idx.ext
%add.ptr2 = getelementptr inbounds i8, i8* %add.ptr, i64 %idx.ext1
%add.ptr3 = getelementptr inbounds i8, i8* %add.ptr2, i64 -1
In this example %idx.ext1 is a loop invariant. It will be moved above the use of
loop induction variable %idx.ext such that it can be hoisted out of the loop by
LICM. The operands that have dependences carried by the loop will be sinked down
in the GEP chain. This patch will produce the following output:
do.body:
%cur_match.addr.0 = phi i32 [ %cur_match, %entry ], [ %2, %do.cond ]
%idx.ext = zext i32 %cur_match.addr.0 to i64
%add.ptr = getelementptr inbounds i8, i8* %win, i64 %idx.ext1
%add.ptr2 = getelementptr inbounds i8, i8* %add.ptr, i64 -1
%add.ptr3 = getelementptr inbounds i8, i8* %add.ptr2, i64 %idx.ext
llvm-svn: 328539
This replaces a large chunk of code that was looking for compound
patterns that include these sub-patterns. Existing tests ensure that
all of the previous examples are still folded as expected.
We still need to loosen the FMF check.
llvm-svn: 328502
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165