New android ndk linker started adding more flags to the produced
binaries, which causes older dynamic linkers display warnings to stderr
about unsupported flags. This interferes with our stderr tests.
Extend the hasChattyStderr function to catch these targets as well.
llvm-svn: 319028
Normal customer devices won't be able to run these tests, we're hoping to get
a public facing bot set up at some point. Both devices pass the testsuite without
any errors or failures.
I have seen some instability with the armv7 test runs, I may submit additional patches
to address this. arm64 looks good.
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 314132
Normal customer devices won't be able to run these devices, we're hoping to get
a public facing bot set up at some point. Both devices pass the testsuite without
any errors or failures.
I have seen some instability with the armv7 test runs, I may submit additional patches
to address this. arm64 looks good.
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 314038
Normal customer devices won't be able to run these devices, we're hoping to get
a public facing bot set up at some point.
There will be some smaller follow-on patches. The changes to tools/lldb-server are
verbose and I'm not thrilled with having to skip all of these tests manually.
There are a few places where I'm making the assumption that "armv7", "armv7k", "arm64"
means it's an ios device, and I need to review & clean these up with an OS check
as well. (Android will show up as "arm" and "aarch64" so by pure luck they shouldn't
cause problems, but it's not an assumption I want to rely on).
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 313932
This adds a simple testcase for MainThreadCheckerRuntime. The tool (Main Thread Checker) is only available on Darwin, so the test also detects the presence of libMainThreadChecker.dylib and is skipped if the tool is not available.
llvm-svn: 307170
Summary:
This aims to replace the different decorators we've had on each libc++
test with a single solution. Each libc++ will be assigned to the
"libc++" category and a single central piece of code will decide whether
we are actually able to run libc++ test in the given configuration by
enabling or disabling the category (while giving the user the
opportunity to override this).
I started this effort because I wanted to get libc++ tests running on
android, and none of the existing decorators worked for this use case:
- skipIfGcc - incorrect, we can build libc++ executables on android
with gcc (in fact, after this, we can now do it on linux as well)
- lldbutil.skip_if_library_missing - this checks whether libc++.so is
loaded in the proces, which fails in case of a statically linked
libc++ (this makes copying executables to the remote target easier to
manage).
To make this work I needed to split out the pseudo_barrier code from the
force-included file, as libc++'s atomic does not play well with gcc on
linux, and this made every test fail, even though we need the code only
in the threading tests.
So far, I am only annotating one of the tests with this category. If
this does not break anything, I'll proceed to update the rest.
Reviewers: jingham, zturner, EricWF
Subscribers: srhines, lldb-commits
Differential Revision: https://reviews.llvm.org/D30984
llvm-svn: 299028
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Summary:
On some android targets, a binary can produce additional garbage (e.g. warning messages from the
dynamic linker) on the standard error, which confuses some tests. This relaxes the stderr
expectations for targets known for their chattyness.
Reviewers: tfiala, ovyalov
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D19114
llvm-svn: 266326
This patch adds support for Linux on SystemZ:
- A new ArchSpec value of eCore_s390x_generic
- A new directory Plugins/ABI/SysV-s390x providing an ABI implementation
- Register context support
- Native Linux support including watchpoint support
- ELF core file support
- Misc. support throughout the code base (e.g. breakpoint opcodes)
- Test case updates to support the platform
This should provide complete support for debugging the SystemZ platform.
Not yet supported are optional features like transaction support (zEC12)
or SIMD vector support (z13).
There is no instruction emulation, since our ABI requires that all code
provide correct DWARF CFI at all PC locations in .eh_frame to support
unwinding (i.e. -fasynchronous-unwind-tables is on by default).
The implementation follows existing platforms in a mostly straightforward
manner. A couple of things that are different:
- We do not use PTRACE_PEEKUSER / PTRACE_POKEUSER to access single registers,
since some registers (access register) reside at offsets in the user area
that are multiples of 4, but the PTRACE_PEEKUSER interface only allows
accessing aligned 8-byte blocks in the user area. Instead, we use a s390
specific ptrace interface PTRACE_PEEKUSR_AREA / PTRACE_POKEUSR_AREA that
allows accessing a whole block of the user area in one go, so in effect
allowing to treat parts of the user area as register sets.
- SystemZ hardware does not provide any means to implement read watchpoints,
only write watchpoints. In fact, we can only support a *single* write
watchpoint (but this can span a range of arbitrary size). In LLDB this
means we support only a single watchpoint. I've set all test cases that
require read watchpoints (or multiple watchpoints) to expected failure
on the platform. [ Note that there were two test cases that install
a read/write watchpoint even though they nowhere rely on the "read"
property. I've changed those to simply use plain write watchpoints. ]
Differential Revision: http://reviews.llvm.org/D18978
llvm-svn: 266308
This doesn't attempt to move every decorator. The reason for
this is that it requires touching every single test file to import
decorators.py. I would like to do this in a followup patch, but
in the interest of keeping the patches as bite-sized as possible,
I've only attempted to move the underlying common decorators first.
A few tests call these directly, so those tests are updated as part
of this patch.
llvm-svn: 259807
My eventual goal is to move all of the test decorators to their
own module such as `decorators.py`. But some of the decorators
use existing functions in `lldbtest.py` and conceptually the
functions are probably more appropriately placed in lldbplatformutil.
Moreover, lldbtest.py is a huge file with a ton of random utility
functions scattered around, so this patch also workds toward the
goal of reducing the footprint of this one module to a more
reasonable size.
So this patch moves some of them over to lldbplatformutil with the
eventual goal of moving decorators over to their own module.
Reviewed By: Tamas Berghammer, Pavel Labath
Differential Revision: http://reviews.llvm.org/D16830
llvm-svn: 259680
Absolute imports were introduced in Python 2.5 as a feature
(e.g. from __future__ import absolute_import), and made default
in Python 3.
When absolute imports are enabled, the import system changes in
a couple of ways:
1) The `import foo` syntax will *only* search sys.path. If `foo`
isn't in sys.path, it won't be found. Period. Without absolute
imports, the import system will also search the same directory
that the importing file resides in, so that you can easily
import from the same folder.
2) From inside a package, you can use a dot syntax to refer to higher
levels of the current package. For example, if you are in the
package lldbsuite.test.utility, then ..foo refers to
lldbsuite.test.foo. You can use this notation with the
`from X import Y` syntax to write intra-package references. For
example, using the previous locationa s a starting point, writing
`from ..support import seven` would import lldbsuite.support.seven
Since this is now the default behavior in Python 3, this means that
importing from the same directory with `import foo` *no longer works*.
As a result, the only way to have portable code is to force absolute
imports for all versions of Python.
See PEP 0328 [https://www.python.org/dev/peps/pep-0328/] for more
information about absolute and relative imports.
Differential Revision: http://reviews.llvm.org/D14342
Reviewed By: Todd Fiala
llvm-svn: 252191
This is the conclusion of an effort to get LLDB's Python code
structured into a bona-fide Python package. This has a number
of benefits, but most notably the ability to more easily share
Python code between different but related pieces of LLDB's Python
infrastructure (for example, `scripts` can now share code with
`test`).
llvm-svn: 251532