The FinalRead statement represented a virtual read that is executed after the
SCoP. It was used when we verified the correctness of a schedule by checking if
it yields the same FLOW dependences as the original code. This is only works, if
we have a final read that reads all memory at the end of the SCoP.
We now switched to just checking if a schedule does not introduce negative
dependences and also consider WAW WAR dependences. This restricts the schedules
a little bit more, but we do not have any optimizer that would calculate a more
complex schedule. Hence, for now final reads are obsolete.
llvm-svn: 152319
We now just check if the new scattering would create non-positive dependences.
This is a lot faster than recalculating dependences (which is especially slow
on tiled code).
llvm-svn: 152230
In case we can not analyze an access function, we do not discard the SCoP, but
assume conservatively that all memory accesses that can be derived from our base
pointer may be accessed.
Patch provided by: Marcello Maggioni <hayarms@gmail.com>
llvm-svn: 146972
Parameters can be complex SCEV expressions, but they can also be single scalar
values. If a parameters is such a simple scalar value and the value is named,
use this name to name the isl parameter dimensions.
llvm-svn: 144641
This does not work reliable and is probably not needed. I accidentally changed
this in this recent commit:
commit a0bcd63c6ffa81616cf8c6663a87588803f7d91c
Author: grosser <grosser@91177308-0d34-0410-b5e6-96231b3b80d8>
Date: Thu Nov 10 12:47:21 2011 +0000
ScopDetect: Use INVALID macro to fail in case of aliasing
This simplifies the code and also makes the error message available to the
graphviz scop viewer.
git-svn-id: https://llvm.org/svn/llvm-project/polly/trunk@144284
llvm-svn: 144286
address is part of the access function. Also remove unused special cases that
were necessery when the base address was still contained in the access function
llvm-svn: 144280
Previously we allowed in access functions only a single SCEVUnknown, which later
became the base address. We now use getPointerBase() to derive the base address
and all remaining unknowns are handled as parameters. This allows us to handle
cases like A[b+c];
llvm-svn: 144278
This check was necessary because of the use AffineSCEVIterator in TempScopInfo.
As we removed this use recently it is not necessary any more.
llvm-svn: 144228
Instead of using TempScop to find parameters, we detect them directly
on the SCEV. This allows us to remove the TempScop parameter detection
in a subsequent commit.
This fixes a bug reported by Marcello Maggioni <hayarms@gmail.com>
llvm-svn: 144087
Previously we built a context that contained already all parameter dimensions
from the start. We now build a context without any parameter dimensions and
extend the context as needed. All parameter dimensions are added during final
realignment.
llvm-svn: 144085
We currently run the old memory access checker in parallel, as we would
otherwise fail in TempScop because of currently unsupported functions. We will
remove the old memory access checker as soon as TempScop is fixed.
llvm-svn: 143654
The SCEV Validator is used to check if the bound of a loop can be translated
into a polyhedral constraint. The new validator is more general as the check
used previously and e.g. allows bounds like 'smax 1, %a'. At the moment, we
only allow signed comparisons. Also, the new validator is only used to verify
loop bounds. Memory accesses are still handled by the old validator.
llvm-svn: 143576
- Use __isl_give and __isl_take
- Convert variables to start with Uppercase letter
- Only assign the 'domain' after it is fully constructed
- Only name it after it is fully constructed
llvm-svn: 141361
Also take the chance and rename access functions to access relations. This is
because we do not only allow plain functions to describe an access, but we
can have any access relation that can be described with linear constraints.
llvm-svn: 141257
Polly should now be compiled with CLooG 0c252c88946b27b7b61a1a8d8fd7f94d2461dbfd
and isl 56b7d238929980e62218525b4b3be121af386edf. The most convenient way to
update is utils/checkout_cloog.sh.
llvm-svn: 141251
Due to the recent introduction of isl_id, parameters need now always to be
aligned. This was not yet taken care of in the code path of vectorization and
dependence analysis.
llvm-svn: 138555
I am planning to eliminate the TempScopInfo pass. To simplify this I remove
some features that may later be added to the ScopInfo pass.
The interchange pass is currently strongly tested and furthermore ment to be
replaced by the general scheduling optimizer. Reductions itself can later
be added easily.
llvm-svn: 138219
Because of me not understanding the LLVM pass structure well, I did not find a
good way to allocate isl_ctx and to free it later without getting issues with
reference counting. I now found this place, such that we can free isl_ctx. This
patch also fixes the memory leaks that were ignored beforehand.
llvm-svn: 138204
Until today, we compared two affine expressions by defining two maps describing
them, creating an union of those maps, adding constraints that do the comparison
and projecting out unneeded dimensions.
This was simplified to using the isl_pw_aff representation of the affine
expressions and using the relevant isl functions to compare them.
llvm-svn: 137932
At the moment, we still remove the ids after all data structures are created,
as later passes do not yet support ids. This limitation will be removed later.
llvm-svn: 137931
Do not use AffFunc to derive the affine expressions, but use isl_pw_aff to
analyze the original SCEV directly. This will allow several simplifications in
follow up patches, with the final goal of removing AffFunc completely.
llvm-svn: 137930