Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary:
This patch redefines freeze instruction from being UnaryOperator to a subclass of UnaryInstruction.
ConstantExpr freeze is removed, as discussed in the previous review.
FreezeOperator is not added because there's no ConstantExpr freeze.
`freeze i8* null` test is added to `test/Bindings/llvm-c/freeze.ll` as well, because the null pointer-related bug in `tools/llvm-c/echo.cpp` is now fixed.
InstVisitor has visitFreeze now because freeze is not unaryop anymore.
Reviewers: whitequark, deadalnix, craig.topper, jdoerfert, lebedev.ri
Reviewed By: craig.topper, lebedev.ri
Subscribers: regehr, nlopes, mehdi_amini, hiraditya, steven_wu, dexonsmith, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69932
Summary: A user can force a function to be inlined by specifying the always_inline attribute. Currently, thinlto implementation is not aware of always_inline functions and does not guarantee import of such functions, which in turn can prevent inlining of such functions.
Patch by Bharathi Seshadri <bseshadr@cisco.com>
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: mehdi_amini, inglorion, hiraditya, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70014
Patch allows importing declarations of functions and variables, referenced
by the initializer of some other readonly variable.
Differential revision: https://reviews.llvm.org/D69561
Summary:
This extends the rules for when a call instruction is deemed to be an
FPMathOperator, which is based on the type of the call (i.e. the return
type of the function being called). Previously we only allowed
floating-point and vector-of-floating-point types. Now we also allow
arrays (nested to any depth) of floating-point and
vector-of-floating-point types.
This was motivated by llpc, the pipeline compiler for AMD GPUs
(https://github.com/GPUOpen-Drivers/llpc). llpc has many math library
functions that operate on vectors, typically represented as <4 x float>,
and some that operate on matrices, typically represented as
[4 x <4 x float>], and it's useful to be able to decorate calls to all
of them with fast math flags.
Reviewers: spatel, wristow, arsenm, hfinkel, aemerson, efriedma, cameron.mcinally, mcberg2017, jmolloy
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69161
The static analyzer is warning about a potential null dereference, but we know that the source won't be null so just use dyn_cast, which will assert if the value somehow is actually null.
llvm-svn: 373448
The static analyzer is warning about a potential null dereference, but we should be able to use cast<MDNode> directly and if not assert will fire for us.
llvm-svn: 372966
The changes here are based on the corresponding diffs for allowing FMF on 'select':
D61917 <https://reviews.llvm.org/D61917>
As discussed there, we want to have fast-math-flags be a property of an FP value
because the alternative (having them on things like fcmp) leads to logical
inconsistency such as:
https://bugs.llvm.org/show_bug.cgi?id=38086
The earlier patch for select made almost no practical difference because most
unoptimized conditional code begins life as a phi (based on what I see in clang).
Similarly, I don't expect this patch to do much on its own either because
SimplifyCFG promptly drops the flags when converting to select on a minimal
example like:
https://bugs.llvm.org/show_bug.cgi?id=39535
But once we have this plumbing in place, we should be able to wire up the FMF
propagation and start solving cases like that.
The change to RecurrenceDescriptor::AddReductionVar() is required to prevent a
regression in a LoopVectorize test. We are intersecting the FMF of any
FPMathOperator there, so if a phi is not properly annotated, new math
instructions may not be either. Once we fix the propagation in SimplifyCFG, it
may be safe to remove that hack.
Differential Revision: https://reviews.llvm.org/D67564
llvm-svn: 372878
The changes here are based on the corresponding diffs for allowing FMF on 'select':
D61917
As discussed there, we want to have fast-math-flags be a property of an FP value
because the alternative (having them on things like fcmp) leads to logical
inconsistency such as:
https://bugs.llvm.org/show_bug.cgi?id=38086
The earlier patch for select made almost no practical difference because most
unoptimized conditional code begins life as a phi (based on what I see in clang).
Similarly, I don't expect this patch to do much on its own either because
SimplifyCFG promptly drops the flags when converting to select on a minimal
example like:
https://bugs.llvm.org/show_bug.cgi?id=39535
But once we have this plumbing in place, we should be able to wire up the FMF
propagation and start solving cases like that.
The change to RecurrenceDescriptor::AddReductionVar() is required to prevent a
regression in a LoopVectorize test. We are intersecting the FMF of any
FPMathOperator there, so if a phi is not properly annotated, new math
instructions may not be either. Once we fix the propagation in SimplifyCFG, it
may be safe to remove that hack.
Differential Revision: https://reviews.llvm.org/D67564
llvm-svn: 372866
Summary:
Add function to AutoUpgrade to change the datalayout of old X86 datalayout strings.
This adds "-p270:32:32-p271:32:32-p272:64:64" to X86 datalayouts that are otherwise valid
and don't already contain it.
This also removes the compatibility changes in https://reviews.llvm.org/D66843.
Datalayout change in https://reviews.llvm.org/D64931.
Reviewers: rnk, echristo
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67631
llvm-svn: 372267
We cannot create null constants for certain types, e.g. VoidTy,
FunctionTy or LabelTy. getNullValue asserts if we pass in an
unsupported type. We should also check for opaque types, but I'm not
sure how.
This fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14795.
Reviewers: t.p.northover, jfb, vsk
Reviewed By: vsk
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65897
llvm-svn: 369557
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Summary:
This is a tweak to r368311 and r368646 which auto upgrades the calls to
objc runtime functions to objc runtime intrinsics, in order to make sure
that the auto upgrader does not trigger with up-to-date bitcode.
It is possible for bitcode that is up-to-date to contain direct calls to
objc runtime function and those are not inserted by compiler as part of
ARC and they should not be upgraded. Now auto upgrader only triggers as
when the old style of ARC marker is used so it is guaranteed that it
won't trigger on update-to-date bitcode.
This also means it won't do this upgrade for bitcode from llvm-8 and
llvm-9, which preserves the behavior of those releases. Ideally they
should be upgraded as well but it is more important to make sure
AutoUpgrader will not trigger on up-to-date bitcode.
Reviewers: ahatanak, rjmccall, dexonsmith, pete
Reviewed By: dexonsmith
Subscribers: hiraditya, jkorous, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66153
llvm-svn: 368730
the bitcode has the arm64 retainAutoreleasedReturnValue marker
The ARC middle-end passes stopped optimizing or transforming bitcode
that has been compiled with old compilers after we started emitting
calls to ARC runtime functions as intrinsic calls instead of normal
function calls in the front-end and made changes to teach the ARC
middle-end passes about those intrinsics (see r349534). This patch
converts calls to ARC runtime functions that are not intrinsic functions
to intrinsic function calls if the bitcode has the arm64
retainAutoreleasedReturnValue marker. Checking for the presence of the
marker is necessary to make sure we aren't changing ARC function calls
that were originally MRR message sends (see r349952).
rdar://problem/53280660
Differential Revision: https://reviews.llvm.org/D65902
llvm-svn: 368311
Add a new serializer, using a binary format based on the LLVM bitstream
format.
This format provides a way to serialize the remarks in two modes:
1) Separate mode: the metadata is separate from the remark entries.
2) Standalone mode: the metadata and the remark entries are in the same
file.
The format contains:
* a meta block: container version, container type, string table,
external file path, remark version
* a remark block: type, remark name, pass name, function name, debug
file, debug line, debug column, hotness, arguments (key, value, debug
file, debug line, debug column)
A string table is required for this format, which will be dumped in the
meta block to be consumed before parsing the remark blocks.
On clang itself, we noticed a size reduction of 13.4x compared to YAML,
and a compile-time reduction of between 1.7% and 3.5% on CTMark.
Differential Revision: https://reviews.llvm.org/D63466
Original llvm-svn: 367364
Revert llvm-svn: 367370
llvm-svn: 367372
Add a new serializer, using a binary format based on the LLVM bitstream
format.
This format provides a way to serialize the remarks in two modes:
1) Separate mode: the metadata is separate from the remark entries.
2) Standalone mode: the metadata and the remark entries are in the same
file.
The format contains:
* a meta block: container version, container type, string table,
external file path, remark version
* a remark block: type, remark name, pass name, function name, debug
file, debug line, debug column, hotness, arguments (key, value, debug
file, debug line, debug column)
A string table is required for this format, which will be dumped in the
meta block to be consumed before parsing the remark blocks.
On clang itself, we noticed a size reduction of 13.4x compared to YAML,
and a compile-time reduction of between 1.7% and 3.5% on CTMark.
Differential Revision: https://reviews.llvm.org/D63466
llvm-svn: 367364
After rL365286 I had failing test:
LLVM :: tools/gold/X86/v1.12/thinlto_emit_linked_objects.ll
It was failing with the output:
$ llvm-bcanalyzer --dump llvm/test/tools/gold/X86/v1.12/Output/thinlto_emit_linked_objects.ll.tmp3.o.thinlto.bc
Expected<T> must be checked before access or destruction.
Unchecked Expected<T> contained error:
Unexpected end of file reading 0 of 0 bytesStack dump:
Change-Id: I07e03262074ea5e0aae7a8d787d5487c87f914a2
llvm-svn: 366387
Add "memtag" sanitizer that detects and mitigates stack memory issues
using armv8.5 Memory Tagging Extension.
It is similar in principle to HWASan, which is a software implementation
of the same idea, but there are enough differencies to warrant a new
sanitizer type IMHO. It is also expected to have very different
performance properties.
The new sanitizer does not have a runtime library (it may grow one
later, along with a "debugging" mode). Similar to SafeStack and
StackProtector, the instrumentation pass (in a follow up change) will be
inserted in all cases, but will only affect functions marked with the
new sanitize_memtag attribute.
Reviewers: pcc, hctim, vitalybuka, ostannard
Subscribers: srhines, mehdi_amini, javed.absar, kristof.beyls, hiraditya, cryptoad, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64169
llvm-svn: 366123
This recommits r365750 (git commit 8b222ecf27)
Original message:
Currently invalid bitcode files can cause a crash, when OpNum exceeds
the number of elements in Record, like in the attached bitcode file.
The test case was generated by clusterfuzz: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=15698
Reviewers: t.p.northover, thegameg, jfb
Reviewed By: jfb
Differential Revision: https://reviews.llvm.org/D64507
llvm-svn: 365750jkkkk
llvm-svn: 366018
At the moment, bitcode files with invalid forward reference can easily
cause the bitcode reader to run out of memory, by creating a forward
reference with a very high index.
We can use the size of the bitcode file as an upper bound, because a
valid bitcode file can never contain more records. This should be
sufficient to fail early in most cases. The only exception is large
files with invalid forward references close to the file size.
There are a couple of clusterfuzz runs that fail with out-of-memory
because of very high forward references and they should be fixed by this
patch.
A concrete example for this is D64507, which causes out-of-memory on
systems with low memory, like the hexagon upstream bots.
Reviewers: t.p.northover, thegameg, jfb, efriedma, hfinkel
Reviewed By: jfb
Differential Revision: https://reviews.llvm.org/D64577
llvm-svn: 366017
Introduce and deduce "nosync" function attribute to indicate that a function
does not synchronize with another thread in a way that other thread might free memory.
Reviewers: jdoerfert, jfb, nhaehnle, arsenm
Subscribers: wdng, hfinkel, nhaenhle, mehdi_amini, steven_wu,
dexonsmith, arsenm, uenoku, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D62766
llvm-svn: 365830
Currently invalid bitcode files can cause a crash, when OpNum exceeds
the number of elements in Record, like in the attached bitcode file.
The test case was generated by clusterfuzz: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=15698
Reviewers: t.p.northover, thegameg, jfb
Reviewed By: jfb
Differential Revision: https://reviews.llvm.org/D64507
llvm-svn: 365750
Summary: We emit CFI_FUNCTION_DEFS and CFI_FUNCTION_DECLS to
distributed ThinLTO indices to implement indirect function call
checking. This change causes us to only emit entries for functions
that are either defined or used by the module we're writing the index
for (instead of all functions in the combined index), which can make
the indices substantially smaller.
Fixes PR42378.
Reviewers: pcc, vitalybuka, eugenis
Subscribers: mehdi_amini, hiraditya, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63887
llvm-svn: 365537
This patch adds a function attribute, nofree, to indicate that a function does
not, directly or indirectly, call a memory-deallocation function (e.g., free,
C++'s operator delete).
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D49165
llvm-svn: 365336
This allows us to use the analyzer from unit tests.
* Refactor the interface to use proper error handling for most functions
after JF's work.
* Move everything into a BitstreamAnalyzer class.
* Move that to Bitcode/BitcodeAnalyzer.h.
Differential Revision: https://reviews.llvm.org/D64116
llvm-svn: 365286
Reintroduces the scalable vector IR type from D32530, after it was reverted
a couple of times due to increasing chromium LTO build times. This latest
incarnation removes the walk over aggregate types from the verifier entirely,
in favor of rejecting scalable vectors in the isValidElementType methods in
ArrayType and StructType. This removes the 70% degradation observed with
the second repro tarball from PR42210.
Reviewers: thakis, hans, rengolin, sdesmalen
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D64079
llvm-svn: 365203
It's possible that some function can load and store the same
variable using the same constant expression:
store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
%42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
The bitcast expression was mistakenly cached while processing loads,
and never examined later when processing store. This caused @bar to
be mistakenly treated as read-only variable. See load-store-caching.ll.
llvm-svn: 365188
This reverts r365040 (git commit 5cacb91475)
Speculatively reverting, since this appears to have broken check-lld on
Linux. Partial analysis in https://crbug.com/981168.
llvm-svn: 365097
This moves Bitcode/Bitstream*, Bitcode/BitCodes.h to Bitstream/.
This is needed to avoid a circular dependency when using the bitstream
code for parsing optimization remarks.
Since Bitcode uses Core for the IR part:
libLLVMRemarks -> Bitcode -> Core
and Core uses libLLVMRemarks to generate remarks (see
IR/RemarkStreamer.cpp):
Core -> libLLVMRemarks
we need to separate the Bitstream and Bitcode part.
For clang-doc, it seems that it doesn't need the whole bitcode layer, so
I updated the CMake to only use the bitstream part.
Differential Revision: https://reviews.llvm.org/D63899
llvm-svn: 365091
Summary:
If LTOUnit splitting is disabled, the module summary analysis computes
the summary information necessary to perform single implementation
devirtualization during the thin link with the index and no IR. The
information collected from the regular LTO IR in the current hybrid WPD
algorithm is summarized, including:
1) For vtable definitions, record the function pointers and their offset
within the vtable initializer (subsumes the information collected from
IR by tryFindVirtualCallTargets).
2) A record for each type metadata summarizing the vtable definitions
decorated with that metadata (subsumes the TypeIdentiferMap collected
from IR).
Also added are the necessary bitcode records, and the corresponding
assembly support.
The follow-on index-based WPD patch is D55153.
Depends on D53890.
Reviewers: pcc
Subscribers: mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54815
llvm-svn: 364960
This patch introduces a new function attribute, willreturn, to indicate
that a call of this function will either exhibit undefined behavior or
comes back and continues execution at a point in the existing call stack
that includes the current invocation.
This attribute guarantees that the function does not have any endless
loops, endless recursion, or terminating functions like abort or exit.
Patch by Hideto Ueno (@uenoku)
Reviewers: jdoerfert
Subscribers: mehdi_amini, hiraditya, steven_wu, dexonsmith, lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62801
llvm-svn: 364555
There is existing bitcode that we need to support where the structured nature
of pointer types is used to derive the result type of some operation. For
example a GEP's operation and result will be based on its input Type.
When pointers become opaque, the BitcodeReader will still have access to this
information because it's explicitly told how to construct the more complex
types used, but this information will not be attached to any Value that gets
looked up. This changes BitcodeReader so that in all places which use type
information in this manner, it's derived from a side-table rather than from the
Value in question.
llvm-svn: 364550
We saw a 70% ThinLTO link time increase in Chromium for Android, see
crbug.com/978817. Sounds like more of PR42210.
> Recommit of D32530 with a few small changes:
> - Stopped recursively walking through aggregates in
> the verifier, so that we don't impose too much
> overhead on large modules under LTO (see PR42210).
> - Changed tests to match; the errors are slightly
> different since they only report the array or
> struct that actually contains a scalable vector,
> rather than all aggregates which contain one in
> a nested member.
> - Corrected an older comment
>
> Reviewers: thakis, rengolin, sdesmalen
>
> Reviewed By: sdesmalen
>
> Differential Revision: https://reviews.llvm.org/D63321
llvm-svn: 364543
The bitstream reader handles errors poorly. This has two effects:
* Bugs in file handling (especially modules) manifest as an "unexpected end of
file" crash
* Users of clang as a library end up aborting because the code unconditionally
calls `report_fatal_error`
The bitstream reader should be more resilient and return Expected / Error as
soon as an error is encountered, not way late like it does now. This patch
starts doing so and adopting the error handling where I think it makes sense.
There's plenty more to do: this patch propagates errors to be minimally useful,
and follow-ups will propagate them further and improve diagnostics.
https://bugs.llvm.org/show_bug.cgi?id=42311
<rdar://problem/33159405>
Differential Revision: https://reviews.llvm.org/D63518
llvm-svn: 364464
Recommit of D32530 with a few small changes:
- Stopped recursively walking through aggregates in
the verifier, so that we don't impose too much
overhead on large modules under LTO (see PR42210).
- Changed tests to match; the errors are slightly
different since they only report the array or
struct that actually contains a scalable vector,
rather than all aggregates which contain one in
a nested member.
- Corrected an older comment
Reviewers: thakis, rengolin, sdesmalen
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D63321
llvm-svn: 363658
Most parts of LLVM don't care whether the byval type is derived from an
explicit Attribute or from the parameter's pointee type, so it makes
sense for the main access function to just return the right value.
The very few users who do care (only BitcodeReader so far) can find out
how it's specified by accessing the Attribute directly.
llvm-svn: 362642
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362128
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362012
* Adds a 'scalable' flag to VectorType
* Adds an 'ElementCount' class to VectorType to pass (possibly scalable) vector lengths, with overloaded operators.
* Modifies existing helper functions to use ElementCount
* Adds support for serializing/deserializing to/from both textual and bitcode IR formats
* Extends the verifier to reject global variables of scalable types
* Updates documentation
See the latest version of the RFC here: http://lists.llvm.org/pipermail/llvm-dev/2018-July/124396.html
Reviewers: rengolin, lattner, echristo, chandlerc, hfinkel, rkruppe, samparker, SjoerdMeijer, greened, sebpop
Reviewed By: hfinkel, sebpop
Differential Revision: https://reviews.llvm.org/D32530
llvm-svn: 361953
This is a minimal start to correcting a problem most directly discussed in PR38086:
https://bugs.llvm.org/show_bug.cgi?id=38086
We have been hacking around a limitation for FP select patterns by using the
fast-math-flags on the condition of the select rather than the select itself.
This patch just allows FMF to appear with the 'select' opcode. No changes are
needed to "FPMathOperator" because it already includes select-of-FP because
that definition is based on the (return) value type.
Once we have this ability, we can start correcting and adding IR transforms
to use the FMF on a 'select' instruction. The instcombine and vectorizer test
diffs only show that the IRBuilder change is behaving as expected by applying
an FMF guard value to 'select'.
For reference:
rL241901 - allowed FMF with fcmp
rL255555 - allowed FMF with FP calls
Differential Revision: https://reviews.llvm.org/D61917
llvm-svn: 361401
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
Summary:
We hit undefined references building with ThinLTO when one source file
contained explicit instantiations of a template method (weak_odr) but
there were also implicit instantiations in another file (linkonce_odr),
and the latter was the prevailing copy. In this case the symbol was
marked hidden when the prevailing linkonce_odr copy was promoted to
weak_odr. It led to unsats when the resulting shared library was linked
with other code that contained a reference (expecting to be resolved due
to the explicit instantiation).
Add a CanAutoHide flag to the GV summary to allow the thin link to
identify when all copies are eligible for auto-hiding (because they were
all originally linkonce_odr global unnamed addr), and only do the
auto-hide in that case.
Most of the changes here are due to plumbing the new flag through the
bitcode and llvm assembly, and resulting test changes. I augmented the
existing auto-hide test to check for this situation.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, dexonsmith, arphaman, dang, llvm-commits, steven_wu, wmi
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59709
llvm-svn: 360466
TypedDINodeRef<T> is a redundant wrapper of Metadata * that is actually a T *.
Accordingly, change DI{Node,Scope,Type}Ref uses to DI{Node,Scope,Type} * or their const variants.
This allows us to delete many resolve() calls that clutter the code.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D61369
llvm-svn: 360108
COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example.
COMMON /ALPHA/ I, J
For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block.
@alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33!14 = distinct !DISubprogram(…)
!20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha")
!25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24)
!27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression())
!29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28)
!30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression())
!31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28)
!32 = !DIExpression(DW_OP_plus_uconst, 4)
!33 = !DIGlobalVariableExpression(var: !31, expr: !32)
The DWARF generated for this is as follows.
DW_TAG_common_block:
DW_AT_name: alpha
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: common alpha
DW_AT_type: array of 8 bytes
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: i
DW_AT_type: integer*4
DW_AT_location: @Alpha+0
DW_TAG_variable:
DW_AT_name: j
DW_AT_type: integer*4
DW_AT_location: @Alpha+4
Patch by Eric Schweitz!
Differential Revision: https://reviews.llvm.org/D54327
llvm-svn: 357934
Moving subprogram specific flags into DISPFlags makes IR code more readable.
In addition, we provide free space in DIFlags for other
'non-subprogram-specific' debug info flags.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D59288
llvm-svn: 356454
Summary:
The AliasSummary previously contained the AliaseeGUID, which was only
populated when reading the summary from bitcode. This patch changes it
to instead hold the ValueInfo of the aliasee, and always populates it.
This enables more efficient access to the ValueInfo (specifically in the
recent patch r352438 which needed to perform an index hash table lookup
using the aliasee GUID).
As noted in the comments in AliasSummary, we no longer technically need
to keep a pointer to the corresponding aliasee summary, since it could
be obtained by walking the list of summaries on the ValueInfo looking
for the summary in the same module. However, I am concerned that this
would be inefficient when walking through the index during the thin
link for various analyses. That can be reevaluated in the future.
By always populating this new field, we can remove the guard and special
handling for a 0 aliasee GUID when dumping the dot graph of the summary.
An additional improvement in this patch is when reading the summaries
from LLVM assembly we now set the AliaseeSummary field to the aliasee
summary in that same module, which makes it consistent with the behavior
when reading the summary from bitcode.
Reviewers: pcc, mehdi_amini
Subscribers: inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D57470
llvm-svn: 356268
This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This cleans up all InvokeInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57171
llvm-svn: 352910
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every `unreachable` instruction. However,
the optimizer will remove code after calls to functions marked with
`noreturn`. To avoid this UBSan removes `noreturn` from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
`_asan_handle_no_return` before `noreturn` functions. This is important
for functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* `longjmp` (`longjmp` itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the `noreturn` attributes are missing and ASan
cannot unpoison the stack, so it has false positives when stack
unwinding is used.
Changes:
# UBSan now adds the `expect_noreturn` attribute whenever it removes
the `noreturn` attribute from a function
# ASan additionally checks for the presence of this attribute
Generated code:
```
call void @__asan_handle_no_return // Additionally inserted to avoid false positives
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
unreachable
```
The second call to `__asan_handle_no_return` is redundant. This will be
cleaned up in a follow-up patch.
rdar://problem/40723397
Reviewers: delcypher, eugenis
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D56624
llvm-svn: 352003
This broke the RISCV build, and even with that fixed, one of the RISCV
tests behaves surprisingly differently with asserts than without,
leaving there no clear test pattern to use. Generally it seems bad for
hte IR to differ substantially due to asserts (as in, an alloca is used
with asserts that isn't needed without!) and nothing I did simply would
fix it so I'm reverting back to green.
This also required reverting the RISCV build fix in r351782.
llvm-svn: 351796
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
If LTOUnit splitting is disabled, the module summary analysis computes
the summary information necessary to perform single implementation
devirtualization during the thin link with the index and no IR. The
information collected from the regular LTO IR in the current hybrid WPD
algorithm is summarized, including:
1) For vtable definitions, record the function pointers and their offset
within the vtable initializer (subsumes the information collected from
IR by tryFindVirtualCallTargets).
2) A record for each type metadata summarizing the vtable definitions
decorated with that metadata (subsumes the TypeIdentiferMap collected
from IR).
Also added are the necessary bitcode records, and the corresponding
assembly support.
The index-based WPD will be sent as a follow-on.
Depends on D53890.
Reviewers: pcc
Subscribers: mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54815
llvm-svn: 351453
Summary:
Records in the module summary index whether the bitcode was compiled
with the option necessary to enable splitting the LTO unit
(e.g. -fsanitize=cfi, -fwhole-program-vtables, or -fsplit-lto-unit).
The information is passed down to the ModuleSummaryIndex builder via a
new module flag "EnableSplitLTOUnit", which is propagated onto a flag
on the summary index.
This is then used during the LTO link to check whether all linked
summaries were built with the same value of this flag. If not, an error
is issued when we detect a situation requiring whole program visibility
of the class hierarchy. This is the case when both of the following
conditions are met:
1) We are performing LowerTypeTests or Whole Program Devirtualization.
2) There are type tests or type checked loads in the code.
Note I have also changed the ThinLTOBitcodeWriter to also gate the
module splitting on the value of this flag.
Reviewers: pcc
Subscribers: ormris, mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D53890
llvm-svn: 350948
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
Summary:
This patch computes the synthetic function entry count on the whole
program callgraph (based on module summary) and writes the entry counts
to the summary. After function importing, this count gets attached to
the IR as metadata. Since it adds a new field to the summary, this bumps
up the version.
Reviewers: tejohnson
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D43521
llvm-svn: 349076
`Saver` is a StringSaver, which has a few overloads of `save` that all
ultimately just call `StringRef save(StringRef)`. Just take a StringRef
here instead of building up a std::string to convert it to a StringRef.
llvm-svn: 348650
Packing the flags into one bitcode word will save effort in
adding new flags in the future.
Differential Revision: https://reviews.llvm.org/D54755
llvm-svn: 347806
This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
llvm-svn: 347239
An attempt to recommit r346584 after failure on OSX build bot.
Fixed cache key computation in ThinLTOCodeGenerator and added
test case
llvm-svn: 347033
Summary:
Followup from D53596/r346891. Remove the getMDNodeFwdRefOrNull interface
to the MDLoader since it is no longer used. Also improve error messages
when the internal implementation is used within the MDLoader.
Reviewers: steven_wu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54542
llvm-svn: 346899
This is a revised version of D41474.
When the debug location is parsed in BitcodeReader::parseFunction, the
scope and inlinedAt MDNodes are obtained via MDLoader->getMDNodeFwdRefOrNull(),
which will create a forward ref if they were not yet loaded.
Specifically, if one of these MDNodes is in the module level metadata
block, and this is during ThinLTO importing, that metadata block is
lazily loaded.
Most places in that invoke getMDNodeFwdRefOrNull have a corresponding call
to resolveForwardRefsAndPlaceholders which will take care of resolving them.
E.g. places that call getMetadataFwdRefOrLoad, or at the end of parsing a
function-level metadata block, or at the end of the initial lazy load of
module level metadata in order to handle invocations of getMDNodeFwdRefOrNull
for named metadata and global object attachments. However, the calls for
the scope/inlinedAt of debug locations are not backed by any such call to
resolveForwardRefsAndPlaceholders.
To fix this, change the scope and inlinedAt parsing to instead use
getMetadataFwdRefOrLoad, which will ensure the forward refs to lazily
loaded metadata are resolved.
Fixes PR35472.
llvm-svn: 346891
Summary:
Ranges base address specifiers can save a lot of object size in
relocation records especially in optimized builds.
For an optimized self-host build of Clang with split DWARF and debug
info compression in object files, but uncompressed debug info in the
executable, this change produces about 18% smaller object files and 6%
larger executable.
While it would've been nice to turn this on by default, gold's 32 bit
gdb-index support crashes on this input & I don't think there's any
perfect heuristic to implement solely in LLVM that would suffice - so
we'll need a flag one way or another (also possible people might want to
aggressively optimized for executable size that contains debug info
(even with compression this would still come at some cost to executable
size)) - so let's plumb it through.
Differential Revision: https://reviews.llvm.org/D54242
llvm-svn: 346788
The IEEE-754 Standard makes it clear that fneg(x) and
fsub(-0.0, x) are two different operations. The former is a bitwise
operation, while the latter is an arithmetic operation. This patch
creates a dedicated FNeg IR Instruction to model that behavior.
Differential Revision: https://reviews.llvm.org/D53877
llvm-svn: 346774
This patch allows internalising globals if all accesses to them
(from live functions) are from non-volatile load instructions
Differential revision: https://reviews.llvm.org/D49362
llvm-svn: 346584
Summary:
The NotEligibleToImport flag on the GlobalValueSummary was set if it
isn't legal to import (e.g. because it references unpromotable locals)
and when it can't be inlined (in which case importing is pointless).
I split out the inlinable piece into a separate flag on the
FunctionSummary (doesn't make sense for aliases or global variables),
because in the future we may want to import for reasons other than
inlining.
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53345
llvm-svn: 346261
Summary:
This is a revised version of D41474.
When the debug location is parsed in BitcodeReader::parseFunction, the
scope and inlinedAt MDNodes are obtained via MDLoader->getMDNodeFwdRefOrNull(),
which will create a forward ref if they were not yet loaded.
Specifically, if one of these MDNodes is in the module level metadata
block, and this is during ThinLTO importing, that metadata block is
lazily loaded.
Most places in that invoke getMDNodeFwdRefOrNull have a corresponding call
to resolveForwardRefsAndPlaceholders which will take care of resolving them.
E.g. places that call getMetadataFwdRefOrLoad, or at the end of parsing a
function-level metadata block, or at the end of the initial lazy load of
module level metadata in order to handle invocations of getMDNodeFwdRefOrNull
for named metadata and global object attachments. However, the calls for
the scope/inlinedAt of debug locations are not backed by any such call to
resolveForwardRefsAndPlaceholders.
To fix this, change the scope and inlinedAt parsing to instead use
getMetadataFwdRefOrLoad, which will ensure the forward refs to lazily
loaded metadata are resolved.
Fixes PR35472.
Reviewers: dexonsmith, Sunil_Srivastava, vsk
Subscribers: inglorion, eraman, steven_wu, sebpop, mehdi_amini, dmikulin, vsk, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D53596
llvm-svn: 345095
Summary:
In D49565/r337503, the type id record writing was fixed so that only
referenced type ids were emitted into each per-module index for ThinLTO
distributed builds. However, this still left an efficiency issue: each
per-module index checked all type ids for membership in the referenced
set, yielding O(M*N) performance (M indexes and N type ids).
Change the TypeIdMap in the summary to be indexed by GUID, to facilitate
correlating with type identifier GUIDs referenced in the function
summary TypeIdInfo structures. This allowed simplifying other
places where a map from type id GUID to type id map entry was previously
being used to aid this correlation.
Also fix AsmWriter code to handle the rare case of type id GUID
collision.
For a large internal application, this reduced the thin link time by
almost 15%.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51330
llvm-svn: 343021
https://reviews.llvm.org/D42082 introduced variant parts to debug info
in LLVM. Subsequent work on the Rust compiler has found a bug in that
patch; namely, there is a path in MetadataLoader that fails to restore
the discriminator.
This patch fixes the bug.
Patch by: Tom Tromey
Differential revision: https://reviews.llvm.org/D52340
llvm-svn: 342725
r342631 expanded bitc::METADATA_LOCATION by one element. The bitcode
metadata loader was changed in a backwards-incompatible way, leading to
crashes when disassembling old bitcode:
assertion: empty() && "PlaceholderQueue hasn't been flushed before being destroyed"
Assertion failed: (empty() && "PlaceholderQueue hasn't been flushed before being destroyed")
This commit teaches the metadata loader to assume that the newly-added
IsImplicitCode bit is 'false' when not present in old bitcode. I've added a
bitcode compat regression test.
rdar://44645820
llvm-svn: 342678
Summary:
Some lines have a hit counter where they should not have one.
For example, in C++, some cleanup is adding at the end of a scope represented by a '}'.
So such a line has a hit counter where a user expects to not have one.
The goal of the patch is to add this information in DILocation which is used to get the covered lines in GCOVProfiling.cpp.
A following patch in clang will add this information when generating IR (https://reviews.llvm.org/D49916).
Reviewers: marco-c, davidxl, vsk, javed.absar, rnk
Reviewed By: rnk
Subscribers: eraman, xur, danielcdh, aprantl, rnk, dblaikie, #debug-info, vsk, llvm-commits, sylvestre.ledru
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D49915
llvm-svn: 342631
Summary:
ThinLTO imports alias as a copy of a aliasee, so when we import such functions with type tests we will
need type ids used by function. However after D49565 we pick types only during processing of
FunctionSummary which is not happening for such aliesees.
Example:
Unit U1 with a type, a functions F with the type check, and an alias A to the function.
Unit U2 with only call to the alias A.
In particular, this happens when we use -mconstructor-aliases, which is default.
So if c++ unit only creates instance of the class, without calling any other methods it will lack of
necessary type ids, which will result in false CFI reports.
Reviewers: tejohnson, eugenis
Subscribers: pcc, mehdi_amini, inglorion, eraman, hiraditya, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52201
llvm-svn: 342574
Load Hardening.
Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.
Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.
While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.
This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.
Differential Revision: https://reviews.llvm.org/D51157
llvm-svn: 341363
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
Most users won't have to worry about this as all of the
'getOrInsertFunction' functions on Module will default to the program
address space.
An overload has been added to Function::Create to abstract away the
details for most callers.
This is based on https://reviews.llvm.org/D37054 but without the changes to
make passing a Module to Function::Create() mandatory. I have also added
some more tests and fixed the LLParser to accept call instructions for
types in the program address space.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D47541
llvm-svn: 340519
In cases where the debugger load time is a worthwhile tradeoff (or less
costly - such as loading from a DWP instead of a variety of DWOs
(possibly over a high-latency/distributed filesystem)) against object
file size, it can be reasonable to disable pubnames and corresponding
gdb-index creation in the linker.
A backend-flag version of this was implemented for NVPTX in
D44385/r327994 - which was fine for NVPTX which wouldn't mix-and-match
CUs. Now that it's going to be a user-facing option (likely powered by
"-gno-pubnames", the same as GCC) it should be encoded in the
DICompileUnit so it can vary per-CU.
After this, likely the NVPTX support should be migrated to the metadata
& the previous flag implementation should be removed.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D50213
llvm-svn: 339939
Flags in DIBasicType will be used to pass attributes used in
DW_TAG_base_type, such as DW_AT_endianity.
Patch by Chirag Patel!
Differential Revision: https://reviews.llvm.org/D49610
llvm-svn: 339714
Summary:
Currently all type ids are emitted into the index file when it is
written. For distributed ThinLTO, that meant that all type ids were
being duplicated into every single distributed index file, regardless of
whether they were referenced, leading to huge amounts of unnecessary
duplication and size bloat.
Keep track of the type id GUIDs actually referenced by the GV summary
records being emitted, and only emit those type IDs.
Add a new test, and fix test/Assembler/thinlto-summary.ll so that all
type ids are referenced to prevent deletion in that test.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, vitalybuka, llvm-commits
Differential Revision: https://reviews.llvm.org/D49565
llvm-svn: 337503
Summary:
To allow bitcode built by old compiler to pass the current verifer,
BitcodeReader needs to auto infer the correct runtime preemption from
linkage and visibility for GlobalValues.
Since llvm-6.0 bitcode already contains the new field but can be
incorrect in some cases, the attribute needs to be recomputed all the
time in BitcodeReader. This will make all the GVs has dso_local marked
correctly if read from bitcode, and it should still allow the verifier
to catch mistakes in optimization passes.
This should fix PR38009.
Reviewers: sfertile, vsk
Reviewed By: vsk
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49039
llvm-svn: 336560
Summary:
Adds assembly parsing support for the module summary index (follow on
to r333335 which added the assembly writing support).
I added support to llvm-as to invoke the index parsing, so that it can
create either a bitcode file with a Module and a per-module index, or
a combined index without a Module.
I will send follow on patches soon to do the following:
- add support to tools such as llvm-lto2 to parse the per-module indexes
from assembly instead of bitcode when testing the thin link.
- verification support.
Depends on D47844 and D47842.
Reviewers: pcc, dexonsmith, mehdi_amini
Subscribers: inglorion, eraman, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D47905
llvm-svn: 335602
Summary:
Adds a string saver to the ModuleSummaryIndex so it can store value
names in the case of adding a ValueInfo for a GUID when we don't
have the name stored in a Module string table. This is motivated
by the upcoming summary parser patch, where we will read value names
from the summary entry and want to store them, even when a Module
is not available.
Currently this allows us to store the name in the legacy bitcode case,
and I have added a test to show that.
Reviewers: pcc, dexonsmith
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D47842
llvm-svn: 335570
Summary:
Without this change we only add module paths to the combined index when
there is a module hash or at least one global value. Make this more
consistent by adding the module to the index whenever there is a summary
section, and it is a per-module summary (had a MODULE_CODE_SOURCE_FILENAME
record).
Since we will no longer add module paths lazily, add a new interface to get
the module info from the index that asserts it is already added.
Fixes PR37899.
Reviewers: Vlad, pcc
Subscribers: mehdi_amini, inglorion, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D48511
llvm-svn: 335567
Summary:
I discovered when writing the summary parsing support that the
per-module index builder and writer are computing the GUID from the
value name alone (ignoring the linkage type). This was ok since those
GUID were not emitted in the bitcode, and there are never multiple
conflicting names in a single module.
However, I don't see a reason for making the GUID computation different
for the per-module case. It also makes things simpler on the parsing
side to have the GUID computation consistent. So this patch changes the
summary analysis phase and the per-module summary writer to compute the
GUID using the facility on the GlobalValue.
Reviewers: pcc, dexonsmith
Subscribers: llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D47844
llvm-svn: 335560
With the upcoming patch to add summary parsing support, IsAnalysis would
be true in contexts where we are not performing module summary analysis.
Rename to the more specific and approprate HaveGVs, which is essentially
what this flag is indicating.
llvm-svn: 334140
Applying synthetic debug info before the bitcode writer pass has no
testing-related purpose. This commit prevents that from happening.
It also adds tests which check that IR produced with/without
-debugify-each enabled is identical after stripping. This makes it
possible to check that individual passes (or full pipelines) are
invariant to debug info.
llvm-svn: 333861
This commit adds a wrapper for std::distance() which works with ranges.
As it would be a common case to write `distance(predecessors(BB))`, this
also introduces `pred_size()` and `succ_size()` helpers to make that
easier to write.
Differential Revision: https://reviews.llvm.org/D46668
llvm-svn: 332057
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: pcc, mehdi_amini, dexonsmith
Reviewed By: dexonsmith
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45132
llvm-svn: 329334
Summary:
Introduce the ShadowCallStack function attribute. It's added to
functions compiled with -fsanitize=shadow-call-stack in order to mark
functions to be instrumented by a ShadowCallStack pass to be submitted
in a separate change.
Reviewers: pcc, kcc, kubamracek
Reviewed By: pcc, kcc
Subscribers: cryptoad, mehdi_amini, javed.absar, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D44800
llvm-svn: 329108
Summary:
Useful to selectively disable importing into specific modules for
debugging/triaging/workarounds.
Reviewers: eraman
Subscribers: inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D45062
llvm-svn: 328909
Summary:
When building with libFuzzer, converting control flow to selects or
obscuring the original operands of CMPs reduces the effectiveness of
libFuzzer's heuristics.
This patch provides an attribute to disable or modify certain optimizations
for optimal fuzzing signal.
Provides a less aggressive alternative to https://reviews.llvm.org/D44057.
Reviewers: vitalybuka, davide, arsenm, hfinkel
Reviewed By: vitalybuka
Subscribers: junbuml, mehdi_amini, wdng, javed.absar, hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D44232
llvm-svn: 328214
X86 Supports Indirect Branch Tracking (IBT) as part of Control-Flow Enforcement Technology (CET).
IBT instruments ENDBR instructions used to specify valid targets of indirect call / jmp.
The `nocf_check` attribute has two roles in the context of X86 IBT technology:
1. Appertains to a function - do not add ENDBR instruction at the beginning of the function.
2. Appertains to a function pointer - do not track the target function of this pointer by adding nocf_check prefix to the indirect-call instruction.
This patch implements `nocf_check` context for Indirect Branch Tracking.
It also auto generates `nocf_check` prefixes before indirect branchs to jump tables that are guarded by range checks.
Differential Revision: https://reviews.llvm.org/D41879
llvm-svn: 327767
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. In this extension a content type is added,
DW_LNCT_LLVM_source, which contains the embedded source code of the file.
Add new optional attribute for !DIFile IR metadata called source which contains
source text. Use this to output the source to the DWARF line table of code
objects. Analogously extend METADATA_FILE in Bitcode and .file directive in ASM
to support optional source.
Teach llvm-dwarfdump and llvm-objdump about the new values. Update the output
format of llvm-dwarfdump to make room for the new attribute on file_names
entries, and support embedded sources for the -source option in llvm-objdump.
Differential Revision: https://reviews.llvm.org/D42765
llvm-svn: 325970
Summary: The discussion and as per need, each vendor needs a way to keep the old fast flags and the new fast flags in the auto upgrade path of the IR upgrader. This revision addresses that issue.
Patched by Michael Berg
Reviewers: qcolombet, hans, steven_wu
Reviewed By: qcolombet, steven_wu
Subscribers: dexonsmith, vsk, mehdi_amini, andrewrk, MatzeB, wristow, spatel
Differential Revision: https://reviews.llvm.org/D43253
llvm-svn: 325525
Summary:
Gold plugin does not add pass to ThinLTO modules without useful symbols.
In this case ThinLTO can't create corresponding index file and some features, like CFI,
cannot be processes by backed correctly without index.
Given that we don't need the backed output we can request it to avoid
processing the module. This is implemented by this patch using new
"SkipModuleByDistributedBackend" flag.
Reviewers: pcc, tejohnson
Subscribers: mehdi_amini, inglorion, eraman, cfe-commits
Differential Revision: https://reviews.llvm.org/D42995
llvm-svn: 325411
Summary:
TypeID summaries are used by CFI and need to be serialized by ThinLTO
indexing for later use by LTO Backend.
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42611
llvm-svn: 325182
Rather than encode the absence of a checksum with a Kind variant, instead put
both the kind and value in a struct and wrap it in an Optional.
Differential Revision: http://reviews.llvm.org/D43043
llvm-svn: 324928