This now emits simple, unoptimized xdata tables for __C_specific_handler
based on the handlers listed in @llvm.eh.actions calls produced by
WinEHPrepare.
This adds support for running __finally blocks when exceptions are
thrown, and removes the old landingpad fan-in codepath.
I ran some manual execution tests on small basic test cases with and
without optimization, as well as on Chrome base_unittests, which uses a
small amount of SEH. I'm sure there are bugs, and we may need to
revert.
llvm-svn: 235154
Summary:
An alternative is to use a worklist approach. However, that approach
would break the traversing order so that we couldn't lookup SeenExprs
efficiently. I don't see a clear winner here, so I picked the easier approach.
Along with two minor improvements:
1. preserves ScalarEvolution by forgetting instructions replaced
2. removes dead code locally avoiding the need of running DCE afterwards
Test Plan: add to slsr-add.ll a test that requires multiple iterations
Reviewers: broune, dberlin, atrick, meheff
Reviewed By: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9058
llvm-svn: 235151
This allows callers to pass a char ** (such as the one coming from the
standard decreed main declaration - even though everyone usually puts
const on that themselves).
llvm-svn: 235150
Found by code inspection, but breaking i16 at least breaks other tests.
They aren't checking this in particular though, so also add some
explicit tests for the already working types.
llvm-svn: 235148
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Also add "#if defined( LIBXML2_DEFINED )" around code that already used libxml2 in SymbolVendorMacOSX.cpp.
Cleaned up some warnings in ProcessGDBRemote.cpp.
llvm-svn: 235144
r235050 dropped the inlined-at field from `MDLocalVariable`, deferring
to the `!dbg` attachments. Fix `UserValue` to take the `!dbg` into
account when differentiating between variables.
llvm-svn: 235140
A big-endian vector return needs a byte-swap which we aren't doing right now.
For now just bail on these cases to get correctness back.
llvm-svn: 235133
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both. This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`. It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.
For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`. For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).
The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.
Reviewers: rafael, hfinkel
Reviewed By: hfinkel
Subscribers: nicholas, llvm-commits
Differential Revision: http://reviews.llvm.org/D8650
llvm-svn: 235132
Summary:
This fixes a left-over efficiency issue in D8950.
As Andrew and Daniel suggested, we can store the candidates in a stack
and pop the top element when it does not dominate the current
instruction. This reduces the worst-case time complexity to O(n).
Test Plan: a new test in nary-add.ll that exercises this optimization.
Reviewers: broune, dberlin, meheff, atrick
Reviewed By: atrick
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D9055
llvm-svn: 235129
attribute to be placed on Objective-C pointer typedef
to make them strong enough so on their "new" method
family no attempt is made to override these
types. rdar://20255473
llvm-svn: 235128
This is very similar to D8486 / r232852 (vperm2). If we treat insertps intrinsics
as shufflevectors, we can optimize them better.
I've left all but the full zero case of the zero mask variants out of this patch.
I don't think those can be converted into a single shuffle in all cases, but I'd
be happy to be proven wrong as I was for vperm2f128.
Either way, we'd need to support whatever sequence we come up with for those cases
in the backend before converting them here.
Differential Revision: http://reviews.llvm.org/D8833
llvm-svn: 235124
virtual void
LanguageRuntime::ModulesDidLoad (const ModuleList &module_list);
Then reorganized how the objective C plug-in is notified so it will work for all LanguageRuntime subclasses.
llvm-svn: 235118
The CMake install command is defined as:
install(TARGETS targets... [EXPORT <export-name>]
[[ARCHIVE|LIBRARY|RUNTIME|FRAMEWORK|BUNDLE|
PRIVATE_HEADER|PUBLIC_HEADER|RESOURCE]
[DESTINATION <dir>]
[INCLUDES DESTINATION [<dir> ...]]
[PERMISSIONS permissions...]
[CONFIGURATIONS [Debug|Release|...]]
[COMPONENT <component>]
[OPTIONAL] [NAMELINK_ONLY|NAMELINK_SKIP]
] [...])
This means it can only take one parameter from the set of RUNTIME, LIBRARY, or ARCHIVE. If you set more than one of these it seems to gobble up the extra arguments and ignore the COMPONENT argument.
This adds a check to only set LIBRARY or ARCHIVE based on whether or not the library being built is shared.
llvm-svn: 235113
LLVM r235111 changed the `DIBuilder` API to stop using `DIDescriptor`
and its subclasses. Rolled into this was some tightening up of types:
- Scopes: `DIDescriptor` => `MDScope*`.
- Generic debug nodes: `DIDescriptor` => `DebugNode*`.
- Subroutine types: `DICompositeType` => `MDSubroutineType*`.
- Composite types: `DICompositeType` => `MDCompositeType*`.
Note that `DIDescriptor` wraps `MDNode`, and `DICompositeType` wraps
`MDCompositeTypeBase`.
It's this new type strictness that requires changes here.
llvm-svn: 235112
As a step toward killing `DIDescriptor` and its subclasses, remove it
from the `DIBuilder` API. Replace the subclasses with appropriate
pointers from the new debug info hierarchy. There are a couple of
possible surprises in type choices for out-of-tree frontends:
- Subroutine types: `MDSubroutineType`, not `MDCompositeTypeBase`.
- Composite types: `MDCompositeType`, not `MDCompositeTypeBase`.
- Scopes: `MDScope`, not `MDNode`.
- Generic debug info nodes: `DebugNode`, not `MDNode`.
This is part of PR23080.
llvm-svn: 235111
This started failing on Windows after my switch lowering change in r235101.
I suspect the error is unrelated, so adding a triple to pacify it
until it can be fixed. See the PR for details.
llvm-svn: 235106