can give it the same stack slot as the spilled interval if it is folded.
This prevents the fold/unfold code from pointing to the wrong register.
llvm-svn: 58255
(and a bunch of other node types). While there, I
added a doNotCSE predicate and used it to reduce code
duplication (some of the duplicated code was wrong...).
This fixes ARM/cse-libcalls.ll when using LegalizeTypes.
llvm-svn: 58249
worklist twice: UpdateNodeOperands could morph
a new node into a node already on the worklist.
We would then recalculate the NodeId for this
existing node and add it to the worklist. The
testcase is ARM/cse-libcalls.ll, the problem
showing up once UpdateNodeOperands is taught to
do CSE for calls.
llvm-svn: 58246
LargeBlockInfo, we can now dramatically simplify their implementation
and speed them up at the same time. Now the code has time proportional
to the number of uses of the alloca, not the size of the block.
This also eliminates code that tried to batch up different allocas which
are used in the same blocks, and eliminates the 'retry list' logic which
was baroque and no unneccesary. In addition to being a speedup for crazy
cases, this is also a nice cleanup:
PromoteMemoryToRegister.cpp | 270 +++++++++++++++-----------------------------
1 file changed, 96 insertions(+), 174 deletions(-)
llvm-svn: 58229
a trivial dense map. Use this in RewriteSingleStoreAlloca to
avoid aggressively rescanning blocks over and over again. This
fixes PR2925, speeding up mem2reg on the testcase in that bug
from 4.56s to 0.02s in a debug build on my machine.
llvm-svn: 58227
target-independent code to target-specific code. This prevents it
from running on targets that aren't using fast-isel.
In addition to saving compile time, this addresses the problem
that not all targets are prepared for it. In order to use this
pass, all instructions must declare all their fixed uses and
defs of physical registers.
llvm-svn: 58144
variable is moved to the execution engine. The JIT calls the TargetJITInfo
to allocate thread local storage. Currently, only linux/x86 knows how to
allocate thread local global variables.
llvm-svn: 58142
LHS is a foldable load, then LHS and RHS are swapped
and SetCCOpcode is changed to SETUGT. But the later
code is expecting operands to be the wrong way round
for SETUGT, but they are not in this case, resulting
in an inverted compare. The solution is to move the
load normalization before the correction for SETUGT.
This bug was tickled by LegalizeTypes which happened
to legalize the testcase slightly differently to
LegalizeDAG.
llvm-svn: 58092
LoopPass*.
- Although less precise, this means they can be used in clients
without RTTI (who would otherwise need to include LoopPass.h, which
eventually includes things using dynamic_cast). This was the
simplest solution that presented itself, but I am happy to use a
better one if available.
llvm-svn: 58010
assume that i64 has been turned into a BUILD_PAIR
node (when called from LegalizeTypes this hasn't
happened yet) and don't use a vector shuffle mask
with an illegal element type.
llvm-svn: 57972
may return i8, which can result in SELECT nodes for
which the type of the condition is i8, but there are
no patterns for select with i8 condition. Tweak the
LegalizeTypes logic to avoid this as much as possible.
This isn't a real fix because it is still perfectly
possible to end up with such select nodes - CellSPU
needs to be fixed IMHO.
llvm-svn: 57968