Do import the definition of objects from a foreign translation unit if that's type is const and trivial.
Differential Revision: https://reviews.llvm.org/D122805
This reverts commit 620d99b7ed.
Let's see if removing the two offending RUN lines makes this patch pass.
Not ideal to drop tests but, it's just a debugging feature, probably not
that important.
Sometimes when I pass the mentioned option I forget about passing the
parameter list for c++ sources.
It would be also useful newcomers to learn about this.
This patch introduces some logic checking common misuses involving
`-analyze-function`.
Reviewed-By: martong
Differential Revision: https://reviews.llvm.org/D118690
This reverts commit 9d6a615973.
Exit Code: 1
Command Output (stderr):
--
/scratch/buildbot/bothome/clang-ve-ninja/llvm-project/clang/test/Analysis/analyze-function-guide.cpp:53:21: error: CHECK-EMPTY-NOT: excluded string found in input // CHECK-EMPTY-NOT: Every top-level function was skipped.
^
<stdin>:1:1: note: found here
Every top-level function was skipped.
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Input file: <stdin>
Check file: /scratch/buildbot/bothome/clang-ve-ninja/llvm-project/clang/test/Analysis/analyze-function-guide.cpp
-dump-input=help explains the following input dump.
Input was:
<<<<<<
1: Every top-level function was skipped.
not:53 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ error: no match expected
2: Pass the -analyzer-display-progress for tracking which functions are analyzed.
>>>>>>
Sometimes when I pass the mentioned option I forget about passing the
parameter list for c++ sources.
It would be also useful newcomers to learn about this.
This patch introduces some logic checking common misuses involving
`-analyze-function`.
Reviewed-By: martong
Differential Revision: https://reviews.llvm.org/D118690
Some projects [1,2,3] have flex-generated files besides bison-generated
ones.
Unfortunately, the comment `"/* A lexical scanner generated by flex */"`
generated by the tools is not necessarily at the beginning of the file,
thus we need to quickly skim through the file for this needle string.
Luckily, StringRef can do this operation in an efficient way.
That being said, now the bison comment is not required to be at the very
beginning of the file. This allows us to detect a couple more cases
[4,5,6].
Alternatively, we could say that we only allow whitespace characters
before matching the bison/flex header comment. That would prevent the
(probably) unnecessary string search in the buffer. However, I could not
verify that these tools would actually respect this assumption.
Additionally to this, e.g. the Twin project [1] has other non-whitespace
characters (some preprocessor directives) before the flex-generated
header comment. So the heuristic in the previous paragraph won't work
with that.
Thus, I would advocate the current implementation.
According to my measurement, this patch won't introduce measurable
performance degradation, even though we will do 2 linear scans.
I introduce the ignore-bison-generated-files and
ignore-flex-generated-files to disable skipping these files.
Both of these options are true by default.
[1]: https://github.com/cosmos72/twin/blob/master/server/rcparse_lex.cpp#L7
[2]: 22362cdcf9/sandbox/count-words/lexer.c (L6)
[3]: 11abdf6462/lab1/lex.yy.c (L6)
[4]: 47f5b2cfe2/B_yacc/1/y1.tab.h (L2)
[5]: 71d1bf9b1e/src/VBox/Additions/x11/x11include/xorg-server-1.8.0/parser.h (L2)
[6]: 3f773ceb13/Framework/OpenEars.framework/Versions/A/Headers/jsgf_parser.h (L2)
Reviewed By: xazax.hun
Differential Revision: https://reviews.llvm.org/D114510
I just read this part of the code, and I found the nested ifs less
readable.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D114441
Summary: This patch is a part of an attempt to obtain more
timer data from the analyzer. In this patch, we try to use
LLVM::TimeRecord to save time before starting the analysis
and to print the time that a specific function takes while
getting analyzed.
The timer data is printed along with the
-analyzer-display-progress outputs.
ANALYZE (Syntax): test.c functionName : 0.4 ms
ANALYZE (Path, Inline_Regular): test.c functionName : 2.6 ms
Authored By: RithikSharma
Reviewer: NoQ, xazax.hun, teemperor, vsavchenko
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105565
The `-analyzer-display-progress` displayed the function name of the
currently analyzed function. It differs in C and C++. In C++, it
prints the argument types as well in a comma-separated list.
While in C, only the function name is displayed, without the brackets.
E.g.:
C++: foo(), foo(int, float)
C: foo
In crash traces, the analyzer dumps the location contexts, but the
string is not enough for `-analyze-function` in C++ mode.
This patch addresses the issue by dumping the proper function names
even in stack traces.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105708
Adds a `MacroExpansionContext` member to the `AnalysisConsumer` class.
Tracks macro expansions only if the `ShouldDisplayMacroExpansions` is set.
Passes a reference down the pipeline letting AnalysisConsumers query macro
expansions during bugreport construction.
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93223
Update clang/lib/StaticAnalyzer to stop relying on a `MemoryBuffer*`,
using the `MemoryBufferRef` from `getBufferOrNone` or the
`Optional<MemoryBufferRef>` from `getBufferOrFake`, depending on whether
there's logic for checking validity of the buffer. The change to
clang/lib/StaticAnalyzer/Core/IssueHash.cpp is potentially a
functionality change, since the logic was wrong (it checked for
`nullptr`, which was never returned by the old API), but if that was
reachable the new behaviour should be better.
Differential Revision: https://reviews.llvm.org/D89414
With this change, we're more or less ready to allow users outside
of the Static Analyzer to take advantage of path diagnostic consumers
for emitting their warnings in different formats.
Differential Revision: https://reviews.llvm.org/D67422
The AnalyzerOptions object contains too much information that's
entirely specific to the Analyzer. It is also being referenced by
path diagnostic consumers to tweak their behavior. In order for path
diagnostic consumers to function separately from the analyzer,
make a smaller options object that only contains relevant options.
Differential Revision: https://reviews.llvm.org/D67420
Since strong dependencies aren't user-facing (its hardly ever legal to disable
them), lets enforce that they are hidden. Modeling checkers that aren't
dependencies are of course not impacted, but there is only so much you can do
against developers shooting themselves in the foot :^)
I also made some changes to the test files, reversing the "test" package for,
well, testing.
Differential Revision: https://reviews.llvm.org/D81761
If you were around the analyzer for a while now, you must've seen a lot of
patches that awkwardly puts code from one library to the other:
* D75360 moves the constructors of CheckerManager, which lies in the Core
library, to the Frontend library. Most the patch itself was a struggle along
the library lines.
* D78126 had to be reverted because dependency information would be utilized
in the Core library, but the actual data lied in the frontend.
D78126#inline-751477 touches on this issue as well.
This stems from the often mentioned problem: the Frontend library depends on
Core and Checkers, Checkers depends on Core. The checker registry functions
(`registerMallocChecker`, etc) lie in the Checkers library in order to keep each
checker its own module. What this implies is that checker registration cannot
take place in the Core, but the Core might still want to use the data that
results from it (which checker/package is enabled, dependencies, etc).
D54436 was the patch that initiated this. Back in the days when CheckerRegistry
was super dumb and buggy, it implemented a non-documented solution to this
problem by keeping the data in the Core, and leaving the logic in the Frontend.
At the time when the patch landed, the merger to the Frontend made sense,
because the data hadn't been utilized anywhere, and the whole workaround without
any documentation made little sense to me.
So, lets put the data back where it belongs, in the Core library. This patch
introduces `CheckerRegistryData`, and turns `CheckerRegistry` into a short lived
wrapper around this data that implements the logic of checker registration. The
data is tied to CheckerManager because it is required to parse it.
Side note: I can't help but cringe at the fact how ridiculously awkward the
library lines are. I feel like I'm thinking too much inside the box, but I guess
this is just the price of keeping the checkers so modularized.
Differential Revision: https://reviews.llvm.org/D82585
Summary:
As discussed previously when landing patch for OpenMP in Flang, the idea is
to share common part of the OpenMP declaration between the different Frontend.
While doing this it was thought that moving to tablegen instead of Macros will also
give a cleaner and more powerful way of generating these declaration.
This first part of a future series of patches is setting up the base .td file for
DirectiveLanguage as well as the OpenMP version of it. The base file is meant to
be used by other directive language such as OpenACC.
In this first patch, the Directive and Clause enums are generated with tablegen
instead of the macros on OMPConstants.h. The next pacth will extend this
to other enum and move the Flang frontend to use it.
Reviewers: jdoerfert, DavidTruby, fghanim, ABataev, jdenny, hfinkel, jhuber6, kiranchandramohan, kiranktp
Reviewed By: jdoerfert, jdenny
Subscribers: arphaman, martong, cfe-commits, mgorny, yaxunl, hiraditya, guansong, jfb, sstefan1, aaron.ballman, llvm-commits
Tags: #llvm, #openmp, #clang
Differential Revision: https://reviews.llvm.org/D81736
Summary:
This reverts commit 33fb9cbe21.
That commit violates layering by adding a dependency from StaticAnalyzer/Core
back to StaticAnalyzer/FrontEnd, creating a circular dependency.
I can't see a clean way to fix it except refactoring.
Reviewers: echristo, Szelethus, martong
Subscribers: xazax.hun, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalho, donat.nagy, dkrupp, Charusso, ASDenysPetrov, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81752
The thrilling conclusion to the barrage of patches I uploaded lately! This is a
big milestone towards the goal set out in http://lists.llvm.org/pipermail/cfe-dev/2019-August/063070.html.
I hope to accompany this with a patch where the a coreModeling package is added,
from which package diagnostics aren't allowed either, is an implicit dependency
of all checkers, and the core package for the first time can be safely disabled.
Differential Revision: https://reviews.llvm.org/D78126
Checker dependencies were added D54438 to solve a bug where the checker names
were incorrectly registered, for example, InnerPointerChecker would incorrectly
emit diagnostics under the name MallocChecker, or vice versa [1]. Since the
system over the course of about a year matured, our expectations of what a role
of a dependency and a dependent checker should be crystallized a bit more --
D77474 and its summary, as well as a variety of patches in the stack
demonstrates how we try to keep dependencies to play a purely modeling role. In
fact, D78126 outright forbids diagnostics under a dependency checkers name.
These dependencies ensured the registration order and enabling only when all
dependencies are satisfied. This was a very "strong" contract however, that
doesn't fit the dependency added in D79420. As its summary suggests, this
relation is directly in between diagnostics, not modeling -- we'd prefer a more
specific warning over a general one.
To support this, I added a new dependency kind, weak dependencies. These are not
as strict of a contract, they only express a preference in registration order.
If a weak dependency isn't satisfied, the checker may still be enabled, but if
it is, checker registration, and transitively, checker callback evaluation order
is ensured.
If you are not familiar with the TableGen changes, a rather short description
can be found in the summary of D75360. A lengthier one is in D58065.
[1] https://www.youtube.com/watch?v=eqKeqHRAhQM
Differential Revision: https://reviews.llvm.org/D80905
The title and the included test file sums everything up -- the only thing I'm
mildly afraid of is whether anyone actually depends on the weird behavior of
HTMLDiagnostics pretending to be TextDiagnostics if an output directory is not
supplied. If it is, I guess we would need to resort to tiptoeing around the
compatibility flag.
Differential Revision: https://reviews.llvm.org/D76510
It can be used to avoid passing the begin and end of a range.
This makes the code shorter and it is consistent with another
wrappers we already have.
Differential revision: https://reviews.llvm.org/D78016
Some checkers may not only depend on language options but also analyzer options.
To make this possible this patch changes the parameter of the shouldRegister*
function to CheckerManager to be able to query the analyzer options when
deciding whether the checker should be registered.
Differential Revision: https://reviews.llvm.org/D75271
Originally commited in rG57b8a407493c34c3680e7e1e4cb82e097f43744a, but
it broke the modules bot. This is solved by putting the contructors of
the CheckerManager class to the Frontend library.
Differential Revision: https://reviews.llvm.org/D75360
TableGen and .def files (which are meant to be used with the preprocessor) come
with obvious downsides. One of those issues is that generated switch-case
branches have to be identical. This pushes corner cases either to an outer code
block, or into the generated code.
Inspect the removed code in AnalysisConsumer::DigestAnalyzerOptions. You can see
how corner cases like a not existing output file, the analysis output type being
set to PD_NONE, or whether to complement the output with additional diagnostics
on stderr lay around the preprocessor generated code. This is a bit problematic,
as to how to deal with such errors is not in the hands of the users of this
interface (those implementing output types, like PlistDiagnostics etc).
This patch changes this by moving these corner cases into the generated code,
more specifically, into the called functions. In addition, I introduced a new
output type for convenience purposes, PD_TEXT_MINIMAL, which always existed
conceptually, but never in the actual Analyses.def file. This refactoring
allowed me to move TextDiagnostics (renamed from ClangDiagPathDiagConsumer) to
its own file, which it really deserved.
Also, those that had the misfortune to gaze upon Analyses.def will probably
enjoy the sight that a clang-format did on it.
Differential Revision: https://reviews.llvm.org/D76509
Its been a while since my CheckerRegistry related patches landed, allow me to
refresh your memory:
During compilation, TblGen turns
clang/include/clang/StaticAnalyzer/Checkers/Checkers.td into
(build directory)/tools/clang/include/clang/StaticAnalyzer/Checkers/Checkers.inc.
This is a file that contains the full name of the checkers, their options, etc.
The class that is responsible for parsing this file is CheckerRegistry. The job
of this class is to establish what checkers are available for the analyzer (even
from plugins and statically linked but non-tblgen generated files!), and
calculate which ones should be turned on according to the analyzer's invocation.
CheckerManager is the class that is responsible for the construction and storage
of checkers. This process works by first creating a CheckerRegistry object, and
passing itself to CheckerRegistry::initializeManager(CheckerManager&), which
will call the checker registry functions (for example registerMallocChecker) on
it.
The big problem here is that these two classes lie in two different libraries,
so their interaction is pretty awkward. This used to be far worse, but I
refactored much of it, which made things better but nowhere near perfect.
---
This patch changes how the above mentioned two classes interact. CheckerRegistry
is mainly used by CheckerManager, and they are so intertwined, it makes a lot of
sense to turn in into a field, instead of a one-time local variable. This has
additional benefits: much of the information that CheckerRegistry conveniently
holds is no longer thrown away right after the analyzer's initialization, and
opens the possibility to pass CheckerManager in the shouldRegister* function
rather then LangOptions (D75271).
There are a few problems with this. CheckerManager isn't the only user, when we
honor help flags like -analyzer-checker-help, we only have access to a
CompilerInstance class, that is before the point of parsing the AST.
CheckerManager makes little sense without ASTContext, so I made some changes and
added new constructors to make it constructible for the use of help flags.
Differential Revision: https://reviews.llvm.org/D75360