BreakPHIEdge would be set based on whether the instruction needs to
insert a new critical edge to allow sinking into a block where the uses
are PHI nodes. But for instructions with multiple defs it would be reset
on the second def, allowing the instruciton to sink where it should not.
Fixes PR44981
Differential Revision: https://reviews.llvm.org/D78087
Summary:
This prevents BFI queries on new blocks (from
MachineSinking::GetAllSortedSuccessors) and fixes a bunch of assert failures
under -check-bfi-unknown-block-queries=true.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74511
Summary:
Making `Scale` a `TypeSize` in AArch64InstrInfo::getMemOpInfo,
has the effect that all places where this information is used
(notably, TargetInstrInfo::getMemOperandWithOffset) will need
to consider Scale - and derived, Offset - possibly being scalable.
This patch adds a new operand `bool &OffsetIsScalable` to
TargetInstrInfo::getMemOperandWithOffset and fixes up all
the places where this function is used, to consider the
offset possibly being scalable.
In most cases, this means bailing out because the algorithm does not
(or cannot) support scalable offsets in places where it does some
form of alias checking for example.
Reviewers: rovka, efriedma, kristof.beyls
Reviewed By: efriedma
Subscribers: wuzish, kerbowa, MatzeB, arsenm, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, javed.absar, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72758
This caused non-determinism in the compiler, see command on the Phabricator
code review.
> This patch addresses a performance problem reported in PR43855, and
> present in the reapplication in in 001574938e5. It turns out that
> MachineSink will (often) move instructions to the first block that
> post-dominates the current block, and then try to sink further. This
> means if we have a lot of conditionals, we can needlessly create large
> numbers of DBG_VALUEs, one in each block the sunk instruction passes
> through.
>
> To fix this, rather than immediately sinking DBG_VALUEs, record them in
> a pass structure. When sinking is complete and instructions won't be
> sunk any further, new DBG_VALUEs are added, avoiding lots of
> intermediate DBG_VALUE $noregs being created.
>
> Differential revision: https://reviews.llvm.org/D70676
This patch addresses a performance problem reported in PR43855, and
present in the reapplication in in 001574938e5. It turns out that
MachineSink will (often) move instructions to the first block that
post-dominates the current block, and then try to sink further. This
means if we have a lot of conditionals, we can needlessly create large
numbers of DBG_VALUEs, one in each block the sunk instruction passes
through.
To fix this, rather than immediately sinking DBG_VALUEs, record them in
a pass structure. When sinking is complete and instructions won't be
sunk any further, new DBG_VALUEs are added, avoiding lots of
intermediate DBG_VALUE $noregs being created.
Differential revision: https://reviews.llvm.org/D70676
Fix part of PR43855, resolving a problem that comes from the reapplication
in 001574938e5. If we have two DBG_VALUE insts in a block that specify
the location of the same variable, for example:
%0 = someinst
DBG_VALUE %0, !123, !DIExpression()
%1 = anotherinst
DBG_VALUE %1, !123, !DIExpression()
if %0 were to sink, the corresponding DBG_VALUE would sink too, past the
next DBG_VALUE, effectively re-ordering assignments. To fix this, I've
added a SeenDbgVars set recording what variable locations have been seen in
a block already (working bottom up), and now flag DBG_VALUEs that would
pass a later DBG_VALUE for the same variable.
NB, this only works for repeated DBG_VALUEs in the same basic block, the
general case involving control flow is much harder, which I've written
up in PR44117.
Differential revision: https://reviews.llvm.org/D70672
These were:
* D58386 / f5e1b718a6 / reverted in d382a8a768
* D58238 / ee50590e16 / reverted in a8db456b53
Of which the latter has a performance regression tracked in PR43855,
fixed by D70672 / D70676, which will be committed atomically with this
reapplication.
Contains a minor difference to account for a change in the IsCopyInstr
signature.
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
This reverts commit f5e1b718a6.
PR43855 reports a performance regression with commit ee50590e. This commit
depends on the faulty one, so has to come out too.
In the Pre-RA machine sinker, previously we were relying on all DBG_VALUEs
being immediately after the instruction that defined their operands. This
isn't a valid assumption, as a variable location change doesn't
necessarily correspond to where the value is computed. In this patch, we
collect DBG_VALUEs that might need sinking as we walk through a block,
and sink all of them if their defining instruction is sunk.
This patch adds some copy propagation too, so that if we sink a copy inst,
the now non-dominated paths can use the copy source for the variable
location.
Differential Revision: https://reviews.llvm.org/D58386
When we sink DBG_VALUEs between blocks, we simply move the DBG_VALUE
instruction to below the sunk instruction. However, we should also mark
the variable as being undef at the original location, to terminate any
earlier variable location. This patch does that -- plus, if the
instruction being sunk is a copy, it attempts to propagate the copy
through the DBG_VALUE, replacing the destination with the source.
Differential Revision: https://reviews.llvm.org/D58238
Summary:
This patch implements Machine PostDominator Tree verification and ensures that the verification doesn't fail the in-tree tests.
MPDT verification can be enabled using `verify-machine-dom-info` -- the same flag used by Machine Dominator Tree verification.
Flipping the flag revealed that MachineSink falsely claimed to preserve CFG and MDT/MPDT. This patch fixes that.
Reviewers: arsenm, hliao, rampitec, vpykhtin, grosser
Reviewed By: hliao
Subscribers: wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68235
llvm-svn: 373341
Currently the machine instruction sinker identifies DBG_VALUE insts that
also need to sink by comparing register numbers. Unfortunately this isn't
safe, because (after register allocation) a DBG_VALUE may read a register
that aliases what's being sunk. To fix this, identify the DBG_VALUEs that
need to sink by recording & examining their register units. Register units
gives us the following guarantee:
"Two registers overlap if and only if they have a common register unit"
[MCRegisterInfo.h]
Thus we can always identify aliasing DBG_VALUEs if the set of register
units read by the DBG_VALUE, and the register units of the instruction
being sunk, intersect. (MachineSink already uses classes like
"LiveRegUnits" for determining sinking validity anyway).
The test added checks for super and subregister DBG_VALUE reads of a sunk
copy being sunk as well.
Differential Revision: https://reviews.llvm.org/D58191
llvm-svn: 369247
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Summary:
The basic idea here is to make it possible to use
MachineInstr::mayAlias also when the MachineInstr
is const (or the "Other" MachineInstr is const).
The addition of const in MachineInstr::mayAlias
then rippled down to the need for adding const
in several other places, such as
TargetTransformInfo::getMemOperandWithOffset.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, MatzeB, arsenm, jvesely, nhaehnle, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60856
llvm-svn: 358744
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Currently, instructions doing memory accesses through a base operand that is
not a register can not be analyzed using `TII::getMemOpBaseRegImmOfs`.
This means that functions such as `TII::shouldClusterMemOps` will bail
out on instructions using an FI as a base instead of a register.
The goal of this patch is to refactor all this to return a base
operand instead of a base register.
Then in a separate patch, I will add FI support to the mem op clustering
in the MachineScheduler.
Differential Revision: https://reviews.llvm.org/D54846
llvm-svn: 347746
As reported in PR38952, postra-machine-sink relies on DBG_VALUE insns being
adjacent to the def of the register that they reference. This is not always
true, leading to register copies being sunk but not the associated DBG_VALUEs,
which gives the debugger a bad variable location.
This patch collects DBG_VALUEs as we walk through a BB looking for copies to
sink, then passes them down to performSink. Compile-time impact should be
negligable.
Differential Revision: https://reviews.llvm.org/D53992
llvm-svn: 345996
Check that Machine CSE correctly handles during the transformation, the
debug location information for local variables.
Differential Revision: https://reviews.llvm.org/D50887
llvm-svn: 341025
Summary:
The logic for handling the sinking of COPY instructions was generating
different code when building with debug flags.
The original code did not take into consideration debug instructions. This
resulted in the registers in the DBG_VALUE instructions being treated as used,
and prevented the COPY from being sunk. This patch avoids analyzing debug
instructions when trying to sink COPY instructions.
This patch also creates a routine from the code in MachineSinking::SinkInstruction to
perform the logic of sinking an instruction along with its debug instructions.
This functionality is used in multiple places, including the code for sinking COPY instrs.
Reviewers: junbuml, javed.absar, MatzeB, bjope
Reviewed By: bjope
Subscribers: aprantl, probinson, thegameg, jonpa, bjope, vsk, kristof.beyls, JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D45637
llvm-svn: 335264
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Extend the live-in check for all aliased registers so that we can
allow sinking Copy instructions when only implicit def is in successor's
live-in.
llvm-svn: 331072
Summary:
This change declare that PostRAMachineSinking and ShrinkWrap require NoVRegs
property, so now the MachineFunctionPass can enforce this check.
These passes are disabled in NVPTX & WebAssembly.
Reviewers: dschuff, jlebar, tra, jgravelle-google, MatzeB, sebpop, thegameg, mcrosier
Reviewed By: dschuff, thegameg
Subscribers: jholewinski, jfb, sbc100, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D45183
llvm-svn: 329095
Summary: Mark CFG is preserved since this pass do not make any change in CFG.
Reviewers: sebpop, mzolotukhin, mcrosier
Reviewed By: mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44845
llvm-svn: 328727
Summary:
This pass sinks COPY instructions into a successor block, if the COPY is not
used in the current block and the COPY is live-in to a single successor
(i.e., doesn't require the COPY to be duplicated). This avoids executing the
the copy on paths where their results aren't needed. This also exposes
additional opportunites for dead copy elimination and shrink wrapping.
These copies were either not handled by or are inserted after the MachineSink
pass. As an example of the former case, the MachineSink pass cannot sink
COPY instructions with allocatable source registers; for AArch64 these type
of copy instructions are frequently used to move function parameters (PhyReg)
into virtual registers in the entry block..
For the machine IR below, this pass will sink %w19 in the entry into its
successor (%bb.1) because %w19 is only live-in in %bb.1.
```
%bb.0:
%wzr = SUBSWri %w1, 1
%w19 = COPY %w0
Bcc 11, %bb.2
%bb.1:
Live Ins: %w19
BL @fun
%w0 = ADDWrr %w0, %w19
RET %w0
%bb.2:
%w0 = COPY %wzr
RET %w0
```
As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
able to see %bb.0 as a candidate.
With this change I observed 12% more shrink-wrapping candidate and 13% more dead copies deleted in spec2000/2006/2017 on AArch64.
Reviewers: qcolombet, MatzeB, thegameg, mcrosier, gberry, hfinkel, john.brawn, twoh, RKSimon, sebpop, kparzysz
Reviewed By: sebpop
Subscribers: evandro, sebpop, sfertile, aemerson, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D41463
llvm-svn: 328237
MachineSink attempts to place instructions near the basic blocks where
they are needed. Once an instruction has been sunk, its location
relative to other instructions no longer is consistent with the
original source code. In order to ensure correct stepping in the
debugger, the debug location for sunk instructions is either merged
with the insertion point or erased if the target successor block is
empty.
Originally submitted as r318679, revised to fix sanitizer failure and
improve testing.
Patch by Matthew Voss!
Differential Revision: https://reviews.llvm.org/D39933
llvm-svn: 320216
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
MachineSink attempts to place instructions near the basic blocks where
they are needed. Once an instruction has been sunk, its location
relative to other instructions is no longer consistent with the
original source code. In order to ensure correct single-stepping and
profiling, the debug location for sunk instructions is either merged
with the insertion point or erased if the target successor block is
empty.
Patch by Matthew Voss!
Differential Revision: https://reviews.llvm.org/D39933
llvm-svn: 318679
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921