This changes the ABI used on 32-bit x86 for passing vector arguments.
Historically, clang passes the first 4 vector arguments in-register, and additional vector arguments on the stack, regardless of platform. That is different from the behavior of gcc, icc, and msvc, all of which pass only the first 3 arguments in-register.
The 3-register convention is documented, unofficially, in Agner's calling convention guide, and, officially, in the recently released version 1.0 of the i386 psABI.
Darwin is kept as is because the OS X ABI Function Call Guide explicitly documents the current (4-register) behavior.
This fixes PR21510
Differential revision: http://reviews.llvm.org/D9644
llvm-svn: 237682
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.
Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.
When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.
It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.
There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).
Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]
I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.
llvm-svn: 219046
test cases that will change with the new vector shuffle lowering. This
gives us a nice baseline for deltas against. I've checked and removed
the cases where there were weird register usage being pinned down, and
all of these are extremely pin-pointed tests so fully checking them
seems very appropriate.
llvm-svn: 218941
- Due to the current matching vector elements constraints in
ISD::FP_ROUND, rounding from v2f64 to v4f32 (after legalization from
v2f32) is scalarized. Add a customized v2f32 widening to convert it
into a target-specific X86ISD::VFPROUND to work around this
constraints.
llvm-svn: 165631