Currently optimizeMemoryInst requires that all of the AddrModes it sees are
identical. This patch makes it capable of tracking multiple AddrModes, so long
as they differ in at most one field.
This patch does nothing by itself, but later patches will make use of it to
insert or reuse phi or select instructions for the differing fields.
Differential Revision: https://reviews.llvm.org/D38278
llvm-svn: 314795
This lets us optimize away selects that perform the same address computation in
two different ways and is also the first step towards being able to handle
selects between two different, but compatible, address computations.
Differential Revision: https://reviews.llvm.org/D38242
llvm-svn: 314794
In this code, we use ~0U as a sentinel value for any operand class that doesn't
have a user-friendly error message, but this value isn't in range of the
MatchClassKind enum, so we need to ensure it does not get passed to isSubclass.
llvm-svn: 314793
If the upper bits of a truncation shuffle patterns have at least the minimum number of sign/zero bits on their inputs then we can safely use PACKSS/PACKUS as shuffles.
Partial fix for https://bugs.llvm.org/show_bug.cgi?id=34773
Differential Revision: https://reviews.llvm.org/D38472
llvm-svn: 314788
The code responsible for analysis of inbounds GEPs is extracted into a separate
function: CallAnalyzer::canFoldInboundsGEP. With the patch SROA
enabling/disabling code is localized at one place instead of spreading across
the code of CallAnalyzer::visitGetElementPtr.
Differential Revision: https://reviews.llvm.org/D38233
llvm-svn: 314787
Summary:
Take the target's endianness into account when splitting the
debug information in DAGTypeLegalizer::SetExpandedInteger.
This patch fixes so that, for big-endian targets, the fragment
expression corresponding to the high part of a split integer
value is placed at offset 0, in order to correctly represent
the memory address order.
I have attached a PPC32 reproducer where the resulting DWARF
pieces for a 64-bit integer were incorrectly reversed.
Original patch was reverted due to using -stop-after=isel in
the test case (but that is only working when AMDGPU target
is included in the llc build). The test case has now been
updated to use -stop-before=expand-isel-pseudos instead.
Patch by: dstenb
Reviewers: JDevlieghere, aprantl, dblaikie
Reviewed By: JDevlieghere, aprantl, dblaikie
Subscribers: nemanjai
Differential Revision: https://reviews.llvm.org/D38172
llvm-svn: 314781
This converts the ARM AsmParser to use the new assembly matcher error
reporting mechanism, which allows errors to be reported for multiple
instruction encodings when it is ambiguous which one the user intended
to use.
By itself this doesn't improve many error messages, because we don't have
diagnostic text for most operand types, but as we add that then this will allow
more of those diagnostic strings to be used when they are relevant.
Differential revision: https://reviews.llvm.org/D31530
llvm-svn: 314779
The current table-generated assembly instruction matcher returns a
64-bit error code when matching fails. Since multiple instruction
encodings with the same mnemonic can fail for different reasons, it uses
some heuristics to decide which message is important.
This heuristic does not work well for targets that have many encodings
with the same mnemonic but different operands, or which have different
versions of instructions controlled by subtarget features, as it is hard
to know which encoding the user was intending to use.
Instead of trying to improve the heuristic in the table-generated
matcher, this patch changes it to report a list of near-miss encodings.
This list contains an entry for each encoding with the correct mnemonic,
but with exactly one thing preventing it from being valid. This thing
could be a single invalid operand, a missing target feature or a failed
target-specific validation function.
The target-specific assembly parser can then report an error message
giving multiple options for instruction variants that the user may have
been trying to use. For example, I am working on a patch to use this for
ARM, which can give this error for an invalid instruction for ARMv6-M:
<stdin>:8:3: error: invalid instruction, multiple near-miss encodings found
adds r0, r1, #0x8
^
<stdin>:8:3: note: for one encoding: instruction requires: thumb2
adds r0, r1, #0x8
^
<stdin>:8:16: note: for one encoding: expected an integer in range [0, 7]
adds r0, r1, #0x8
^
<stdin>:8:16: note: for one encoding: expected a register in range [r0, r7]
adds r0, r1, #0x8
^
This also allows the target-specific assembly parser to apply its own
heuristics to suppress some errors. For example, the error "instruction
requires: arm-mode" is never going to be useful when targeting an
M-profile architecture (which does not have ARM mode).
This patch just adds the target-independent mechanism for doing this,
all targets still use the old mechanism. I've added a bit in the
AsmParser tablegen class to allow targets to switch to this new
mechanism. To use this, the target-specific assembly parser will have to
be modified for the change in signature of MatchInstructionImpl, and to
report errors based on the list of near-misses.
Differential revision: https://reviews.llvm.org/D27620
llvm-svn: 314774
This adds some more debug messages to the type legalizer and functions
like PromoteNode, ExpandNode, ExpandLibCall in an attempt to make
the debug messages a little bit more informative and useful.
Differential Revision: https://reviews.llvm.org/D38450
llvm-svn: 314773
This was previously being silently dropped by obj2yaml and caused
parsing errors with yaml2obj.
Differential Revision: https://reviews.llvm.org/D38490
llvm-svn: 314768
This makes sure the LSDA pointer isn't truncated to 32 bit.
Make LowerINTRINSIC_WO_CHAIN a member function instead of a static
function, so that it can use the getGlobalWrapperKind method.
This solves the second half of the issues mentioned in PR34720.
Differential Revision: https://reviews.llvm.org/D38343
llvm-svn: 314767
Summary:
When checking if a constant expression is a noop cast we fetched the
IntPtrType by doing DL->getIntPtrType(V->getType())). However, there can
be cases where V doesn't return a pointer, and then getIntPtrType()
triggers an assertion.
Now we pass DataLayout to isNoopCast so the method itself can determine
what the IntPtrType is.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D37894
llvm-svn: 314763
Apparently this works by virtue of the fact that the pointers are pointers to the APInts stored inside of the ConstantInt objects. But I really don't think we should be relying on that.
llvm-svn: 314761
Previous code was a bit puzzling because of its use of pointers.
In this patch, we pass a vector and its offsets, instead of pointers to
vector elements.
llvm-svn: 314756
Move error handling code next to the code that returns the error,
and change the error message in order to distinguish it from a similar
error message elsewhere in this file.
llvm-svn: 314745
These are problematic because they apply to everything,
and can easily clobber whatever more specific predicate
you are trying to add to a function.
Currently instructions use SubtargetPredicate/PredicateControl
to apply this to patterns applied to an instruction definition,
but not to free standing Pats. Add a wrapper around Pat
so the special PredicateControls requirements can be appended
to the final predicate list like how Mips does it.
llvm-svn: 314742
Call ConstantFoldSelectInstruction() to fold cases like below
select <2 x i1><i1 true, i1 false>, <2 x i8> <i8 0, i8 1>, <2 x i8> <i8 2, i8 3>
All operands are constants and the condition has mixed true and false conditions.
Differential Revision: https://reviews.llvm.org/D38369
llvm-svn: 314741
Summary:
This avoids using void * as the type of the lattice value and ugly casts needed to make that happen.
(If folks want to use references, etc, they can use a reference_wrapper).
Reviewers: davide, mssimpso
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D38476
llvm-svn: 314734
Issues addressed since original review:
- Avoid bug in regalloc greedy/machine verifier when forwarding to use
in an instruction that re-defines the same virtual register.
- Fixed bug when forwarding to use in EarlyClobber instruction slot.
- Fixed incorrect forwarding to register definitions that showed up in
explicit_uses() iterator (e.g. in INLINEASM).
- Moved removal of dead instructions found by
LiveIntervals::shrinkToUses() outside of loop iterating over
instructions to avoid instructions being deleted while pointed to by
iterator.
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 314729
These check lines are supposed to make sure the new d16
load instructions aren't used, but the expected instruction
name is a prefix of the incorrect instruction name.
llvm-svn: 314714
Summary: Also add support for some older Myriad CPUs that were missing.
Reviewers: jyknight
Subscribers: fedor.sergeev
Differential Revision: https://reviews.llvm.org/D37552
llvm-svn: 314705