Commit Graph

654 Commits

Author SHA1 Message Date
Lei Zhang f8bbe5deca Various tiny refinements over TableGen Operator class
Use "native" vs "derived" to differentiate attributes on ops: native ones
are specified when creating the op as a part of defining the op, while
derived ones are computed from properties of the op.

PiperOrigin-RevId: 228186962
2019-03-29 15:01:56 -07:00
Jacques Pienaar 65fc8643ec Addresing follow up comments from cl/227991412.
PiperOrigin-RevId: 228185819
2019-03-29 15:01:40 -07:00
River Riddle bee0b83cef Update the langref to include the rationale and specification of the dialect extended type system.
PiperOrigin-RevId: 228184876
2019-03-29 15:01:26 -07:00
River Riddle 3b2c5600d9 Add support for types belonging to unknown dialects. This allows for types to be round tripped even if the dialect that defines them is not linked in. These types will be represented by a new "UnknownType" that uniques them based upon the dialect namespace and raw string type data.
PiperOrigin-RevId: 228184629
2019-03-29 15:01:11 -07:00
Jacques Pienaar aae85ddce1 Match attributes in input pattern.
Bind attributes similar to operands. Use to rewrite leakyreulo and const rewrite pattern. The attribute type/attributes are not currently checked so should only be used where the attributes match due to the construction of the op.

To support current attribute namespacing, convert __ in attribute name to "$" for matching purposes ('$' is not valid character in variable in TableGen).

Some simplification to make it simpler to specify indented ostream and avoid so many spaces. The goal is not to have perfectly formatted code generated but good enough so that its still easy to read for a user.

PiperOrigin-RevId: 228183639
2019-03-29 15:00:55 -07:00
Jacques Pienaar 8d849eb4b9 Add static shape tensor type and rewrite squeeze and reshape rewrites as patterns.
This also moves the predicate declaration in op_base into one section.

PiperOrigin-RevId: 228170793
2019-03-29 15:00:40 -07:00
Alex Zinenko 92a899f629 Drop all uses of the ForInst induction variable before deleting ForInst
The `for` instruction defines the loop induction variable it uses.  In the
well-formed IR, the induction variable can only be used by the body of the
`for` loop.  Existing implementation was explicitly cleaning the body of the
for loop to remove all uses of the induction variable before removing its
definition.  However, in ill-formed IR that may appear in some stages of
parsing, there may be (invalid) users of the loop induction variable outside
the loop body.  In case of unsuccessful parsing, destructor of the
ForInst-defined Value would assert because there are remaining though invalid
users of this Value.  Explicitly drop all uses of the loop induction Value when
destroying a ForInst.  It is no longer necessary to explicitly clean the body
of the loop, destructor of the block will take care of this.

PiperOrigin-RevId: 228168880
2019-03-29 15:00:26 -07:00
Alex Zinenko 3b7b0040ce FunctionParser::~FunctionParser: avoid iterator invalidation
When destroying a FunctionParser in case of parsing failure, we clean up all
uses of undefined forward-declared references.  This has been implemented as
iteration over the list of uses.  However, deleting one use from the list
invalidates the iterator (`IROperand::drop` sets `nextUse` to `nullptr` while
the iterator reads `nextUse` to advance; therefore only the first use was
deleted from the list).  Get a new iterator before calling drop to avoid
invalidation.

PiperOrigin-RevId: 228168849
2019-03-29 15:00:10 -07:00
Uday Bondhugula 94c2d969ce Rename getAffineBinaryExpr -> getAffineBinaryOpExpr, getBinaryAffineOpExpr ->
getAffineBinaryOpExpr for consistency (NFC)

- this is consistent with the name of the class and getAffineDimExpr/ConstantExpr, etc.

PiperOrigin-RevId: 228164959
2019-03-29 14:59:52 -07:00
Nicolas Vasilache 7c0bbe0939 Iterate on vector rather than DenseMap during AffineMap normalization
This CL removes a flakyness associated to a spurious iteration on DenseMap
iterators when normalizing AffineMap.

PiperOrigin-RevId: 228160074
2019-03-29 14:59:37 -07:00
Alex Zinenko c47ed53211 Add simple constant folding hook for CmpIOp
Integer comparisons can be constant folded if both of their arguments are known
constants, which we can compare in the compiler.  This requires implementing
all comparison predicates, but thanks to consistency between LLVM and MLIR
comparison predicates, we have a one-to-one correspondence between predicates
and llvm::APInt comparison functions.  Constant folding of comparsions with
maximum/minimum values of the integer type are left for future work.

This will be used to test the lowering of mod/floordiv/ceildiv in affine
expressions at compile time.

PiperOrigin-RevId: 228077580
2019-03-29 14:59:22 -07:00
Alex Zinenko caa7e70627 LLVM IR lowering: support integer division and remainder operations
These operations trivially map to LLVM IR counterparts for operands of scalar
and (one-dimensional) vector type.  Multi-dimensional vector and tensor type
operands would fail type conversion before the operation conversion takes
place.  Add tests for scalar and vector cases.  Also add a test for vector
`select` instruction for consistency with other tests.

PiperOrigin-RevId: 228077564
2019-03-29 14:59:07 -07:00
Alex Zinenko bc04556cf8 Introduce integer division and remainder operations
This adds signed/unsigned integer division and remainder operations to the
StandardOps dialect.  Two versions are required because MLIR integers are
signless, but the meaning of the leading bit is important in division and
affects the results.  LLVM IR made a similar choice.  Define the operations in
the tablegen file and add simple constant folding hooks in the C++
implementation.  Handle signed division overflow and division by zero errors in
constant folding.  Canonicalization is left for future work.

These operations are necessary to lower affine_apply's down to LLVM IR.

PiperOrigin-RevId: 228077549
2019-03-29 14:58:52 -07:00
Nicolas Vasilache 28cf580555 Cleanup spurious DenseMap include
PiperOrigin-RevId: 228059305
2019-03-29 14:58:38 -07:00
Jacques Pienaar 8f24943826 Verify type of operands match those specifed in op registry.
Expand type to include matcher predicates. Use CNF form to allow specifying combinations of constraints for type. The matching call for the type is used to verify the construction of the operation as well as in rewrite pattern generation.

The matching initially includes redundant checks (e.g., even if the operand of the op is guaranteed to satisfy some requirement, it is still checked during matcher generation for now). As well as some of the traits specified now check what the generated code already checks. Some of the traits can be removed in future as the verify method will include the relevant checks based on the op definition already.

More work is needed for variadic operands.

CNF form is used so that in the follow up redundant checks in the rewrite patterns could be omitted (e.g., when matching a F32Tensor, one does not need to verify that op X's operand 0 is a Tensor if that is guaranteed by op X's definition). The alternative was to have single matcher function specified, but this would not allow for reasoning about what attributes already hold (at the level of PredAtoms).

Use this new operand type restrictions to rewrite BiasAdd with floating point operands as declarative pattern.

PiperOrigin-RevId: 227991412
2019-03-29 14:58:23 -07:00
Nicolas Vasilache 62dabbfd09 Fix opt build failure
PiperOrigin-RevId: 227938032
2019-03-29 14:57:36 -07:00
Uday Bondhugula 8496f2c30b Complete TODOs / cleanup for loop-fusion utility
- this is CL 1/2 that does a clean up and gets rid of one limitation in an
  underlying method - as a result, fusion works for more cases.
- fix bugs/incomplete impl. in toAffineMapFromEq
- fusing across rank changing reshapes for example now just works

  For eg. given a rank 1 memref to rank 2 memref reshape (64 -> 8 x 8) like this,
  -loop-fusion -memref-dataflow-opt now completely fuses and inlines/store-forward
  to get rid of the temporary:

INPUT

  // Rank 1 -> Rank 2 reshape
  for %i0 = 0 to 64 {
     %v = load %A[%i0]
     store %v, %B[%i0 floordiv 8, i0 mod 8]
  }

  for %i1 = 0 to 8
    for %i2 = 0 to 8
      %w = load %B[%i1, i2]
      "foo"(%w) : (f32) -> ()

OUTPUT

$ mlir-opt -loop-fusion -memref-dataflow-opt fuse_reshape.mlir

#map0 = (d0, d1) -> (d0 * 8 + d1)
mlfunc @fuse_reshape(%arg0: memref<64xf32>) {
  for %i0 = 0 to 8 {
    for %i1 = 0 to 8 {
      %0 = affine_apply #map0(%i0, %i1)
      %1 = load %arg0[%0] : memref<64xf32>
      "foo"(%1) : (f32) -> ()
    }
  }
}

AFAIK, there is no polyhedral tool / compiler that can perform such fusion -
because it's not really standard loop fusion, but possible through a
generalized slicing-based approach such as ours.

PiperOrigin-RevId: 227918338
2019-03-29 14:57:22 -07:00
Smit Hinsu d02b08eaf4 Add an example of rank zero tensor in go/mlir-spec
TESTED with preview

PiperOrigin-RevId: 227887054
2019-03-29 14:57:07 -07:00
Smit Hinsu d3339ea2b8 Handle parsing failure for splat elements attribute
Currently, it emits the error but does not terminate parsing.

TESTED with unit test

PiperOrigin-RevId: 227886274
2019-03-29 14:56:52 -07:00
Nicolas Vasilache 618c6a74c6 [MLIR] Introduce normalized single-result unbounded AffineApplyOp
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL introduces a simpler abstraction and composition of single-result
unbounded AffineApplyOp by using the existing unbound AffineMap composition.

This CL adds a simple API call and relevant tests:

```c++
OpPointer<AffineApplyOp> makeNormalizedAffineApply(
  FuncBuilder *b, Location loc, AffineMap map, ArrayRef<Value*> operands);
```

which creates a single-result unbounded AffineApplyOp.
The operands of AffineApplyOp are not themselves results of AffineApplyOp by
consrtuction.

This represent the simplest possible interface to complement the composition
of (mathematical) AffineMap, for the cases when we are interested in applying
it to Value*.

In this CL the composed AffineMap is not compressed (i.e. there exist operands
that are not part of the result). A followup commit will compress to normal
form.

The single-result unbounded AffineApplyOp abstraction will be used in a
followup CL to support the MaterializeVectors pass.

PiperOrigin-RevId: 227879021
2019-03-29 14:56:37 -07:00
River Riddle d2cd083f79 Introduce CRTP TypeBase class to simplify type construction and validation.
This impl class currently provides the following:
* auto definition of the 'ImplType = StorageClass'
* get/getChecked wrappers around TypeUniquer
* 'verifyConstructionInvariants' hook
   - This hook verifies that the arguments passed into get/getChecked are valid
     to construct a type instance with.

With this, all non-generic type uniquing has been moved out of MLIRContext.cpp

PiperOrigin-RevId: 227871108
2019-03-29 14:56:22 -07:00
Chris Lattner 7983bbc251 Introduce a simple canonicalization of affine_apply that drops unused dims and
symbols.

Included with this is some other infra:
 - Testcases for other canonicalizations that I will implement next.
 - Some helpers in AffineMap/Expr for doing simple walks without defining whole
   visitor classes.
 - A 'replaceDimsAndSymbols' facility that I'll be using to simplify maps and
   exprs, e.g. to fold one constant into a mapping and to drop/renumber unused dims.
 - Allow index (and everything else) to work in memref's, as we previously
   discussed, to make the testcase easier to write.
 - A "getAffineBinaryExpr" helper to produce a binop when you know the kind as
   an enum.

This line of work will eventually subsume the ComposeAffineApply pass, but it is no where close to that yet :-)

PiperOrigin-RevId: 227852951
2019-03-29 14:56:07 -07:00
Lei Zhang ca88ea6f08 Fix format for empty method definition
PiperOrigin-RevId: 227840511
2019-03-29 14:55:52 -07:00
Alex Zinenko 8281151c2a TableGen standard arithmetic ops
Use tablegen to generate definitions of the standard binary arithmetic
operations.  These operations share a lot of boilerplate that is better off
generated by a tool.

Using tablegen for standard binary arithmetic operations requires the following
modifications.
1. Add a bit field `hasConstantFolder` to the base Op tablegen class; generate
the `constantFold` method signature if the bit is set.  Differentiate between
single-result and zero/multi-result functions that use different signatures.
The implementation of the method remains in C++, similarly to canonicalization
patterns, since it may be large and non-trivial.
2. Define the `AnyType` record of class `Type` since `BinaryOp` currently
provided in op_base.td is supposed to operate on tensors and other tablegen
users may rely on this behavior.

Note that this drops the inline documentation on the operation classes that was
copy-pasted around anyway.  Since we don't generate g3doc from tablegen yet,
keep LangRef.md as it is.  Eventually, the user documentation can move to the
tablegen definition file as well.

PiperOrigin-RevId: 227820815
2019-03-29 14:55:37 -07:00
Jacques Pienaar dde5bf234d Use Operator class in OpDefinitionsGen. Cleanup NFC.
PiperOrigin-RevId: 227764826
2019-03-29 14:55:22 -07:00
Nicolas Vasilache 0ebc0ba72e [MLIR] More graceful failure in MaterializeVectors
Even though it is unexpected except in pathological cases, a nullptr clone may
be returned. This CL handles the nullptr return gracefuly.

PiperOrigin-RevId: 227764615
2019-03-29 14:55:05 -07:00
Nicolas Vasilache 5b87a5ef4b [MLIR] Drop strict super-vector requirement in MaterializeVector
The strict requirement (i.e. at least 2 HW vectors in a super-vector) was a
premature optimization to avoid interfering with other vector code potentially
introduced via other means.

This CL avoids this premature optimization and the spurious errors it causes
when super-vector size == HW vector size (which is a possible corner case).

This may be revisited in the future.

PiperOrigin-RevId: 227763966
2019-03-29 14:54:49 -07:00
Nicolas Vasilache 17f96ea3dd [MLIR] Fix uninitialized value found with msan
The omission of an early exit created opportunities for unitialized memory
reads. This CL fixes the issue.

PiperOrigin-RevId: 227761814
2019-03-29 14:54:36 -07:00
Nicolas Vasilache 947e5f4a68 [MLIR] Handle corner case in MaterializeVectors
This corner was found when stress testing with a functional end-to-end CPU
path. In the case where the hardware vector size is 1x...x1 the `keep` vector
is empty and would result a crash.

While there is no reason to expect a 1x...x1 HW vector in practice, this case
can just gracefully degrade to scalar, which is what this CL allows.

PiperOrigin-RevId: 227761097
2019-03-29 14:54:22 -07:00
River Riddle 54948a4380 Split the standard types from builtin types and move them into separate source files(StandardTypes.cpp/h). After this cl only FunctionType and IndexType are builtin types, but IndexType will likely become a standard type when the ml/cfgfunc merger is done. Mechanical NFC.
PiperOrigin-RevId: 227750918
2019-03-29 14:54:07 -07:00
Jacques Pienaar ae1a6619df Include both TF and TFL ops.td in legalize patterns.
Need to do some ifdef jumps with TableGen to avoid errors due to including the base multiple times. The way TableGen flags repeated includes is by way of checking the include directive this necessitates that the guards are on the includes as well as around the classes/defines.

PiperOrigin-RevId: 227692030
2019-03-29 14:53:52 -07:00
Jacques Pienaar c396c044e6 Match the op via isa instead of string compare.
* Match using isa
  - This limits the rewrite pattern to ops defined in op registry but that is probably better end state (esp. for additional verification).

PiperOrigin-RevId: 227598946
2019-03-29 14:53:37 -07:00
Jacques Pienaar 5c869951ac Add tf.Add op
Add ops.td for TF dialect and start by adding tf.Add (op used in legalizer pattern). This CL does not add TensorOp trait (that's not part of OpTrait namespace).

Remove OpCode emission that is not currently used and can be added back later if needed.

PiperOrigin-RevId: 227590973
2019-03-29 14:53:22 -07:00
River Riddle 8abc06f3d5 Implement initial support for dialect specific types.
Dialect specific types are registered similarly to operations, i.e. registerType<...> within the dialect. Unlike operations, there is no notion of a "verbose" type, that is *all* types must be registered to a dialect. Casting support(isa/dyn_cast/etc.) is implemented by reserving a range of type kinds in the top level Type class as opposed to string comparison like operations.

To support derived types a few hooks need to be implemented:

In the concrete type class:
    - static char typeID;
      * A unique identifier for the type used during registration.

In the Dialect:
    - typeParseHook and typePrintHook must be implemented to provide parser support.

The syntax for dialect extended types is as follows:
 dialect-type:  '!' dialect-namespace '<' '"' type-specific-data '"' '>'

The 'type-specific-data' is information used to identify different types within the dialect, e.g:
 - !tf<"variant"> // Tensor Flow Variant Type
 - !tf<"string">  // Tensor Flow String Type

TensorFlow/TensorFlowControl types are now implemented as dialect specific types as a proof
 of concept.

PiperOrigin-RevId: 227580052
2019-03-29 14:53:07 -07:00
Alex Zinenko 0c4ee54198 Merge LowerAffineApplyPass into LowerIfAndForPass, rename to LowerAffinePass
This change is mechanical and merges the LowerAffineApplyPass and
LowerIfAndForPass into a single LowerAffinePass.  It makes a step towards
defining an "affine dialect" that would contain all polyhedral-related
constructs.  The motivation for merging these two passes is based on retiring
MLFunctions and, eventually, transforming If and For statements into regular
operations.  After that happens, LowerAffinePass becomes yet another
legalization.

PiperOrigin-RevId: 227566113
2019-03-29 14:52:52 -07:00
Jacques Pienaar 3633becf8a Add builderCall to Type and add constant attr class.
With the builder to construct the type on the Type, the appropriate mlir::Type can be constructed where needed. Also add a constant attr class that has the attribute and value as members.

PiperOrigin-RevId: 227564789
2019-03-29 14:52:37 -07:00
Alex Zinenko fa710c17f4 LowerForAndIf: expand affine_apply's inplace
Existing implementation was created before ML/CFG unification refactoring and
did not concern itself with further lowering to separate concerns.  As a
result, it emitted `affine_apply` instructions to implement `for` loop bounds
and `if` conditions and required a follow-up function pass to lower those
`affine_apply` to arithmetic primitives.  In the unified function world,
LowerForAndIf is mostly a lowering pass with low complexity.  As we move
towards a dialect for affine operations (including `for` and `if`), it makes
sense to lower `for` and `if` conditions directly to arithmetic primitives
instead of relying on `affine_apply`.

Expose `expandAffineExpr` function in LoweringUtils.  Use this function
together with `expandAffineMaps` to emit primitives that implement loop and
branch conditions directly.

Also remove tests that become unnecessary after transforming LowerForAndIf into
a function pass.

PiperOrigin-RevId: 227563608
2019-03-29 14:52:22 -07:00
Alex Zinenko d64db86f20 Refactor LowerAffineApply
In LoweringUtils, extract out `expandAffineMap`.  This function takes an affine
map and a list of values the map should be applied to and emits a sequence of
arithmetic instructions that implement the affine map.  It is independent of
the AffineApplyOp and can be used in places where we need to insert an
evaluation of an affine map without relying on a (temporary) `affine_apply`
instruction.  This prepares for a merge between LowerAffineApply and
LowerForAndIf passes.

Move the `expandAffineApply` function to the LowerAffineApply pass since it is
the only place that must be aware of the `affine_apply` instructions.

PiperOrigin-RevId: 227563439
2019-03-29 14:52:07 -07:00
Chris Lattner 8ebd64b32f Update the g3docs to reflect the merging of CFG and ML functions.
PiperOrigin-RevId: 227562943
2019-03-29 14:51:52 -07:00
Chris Lattner bbf362b784 Eliminate extfunc/cfgfunc/mlfunc as a concept, and just use 'func' instead.
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.

This is step 31/n towards merging instructions and statements.  The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.

PiperOrigin-RevId: 227540453
2019-03-29 14:51:37 -07:00
River Riddle ae3f8a79ae Rename OperationPrefix to Namespace in Dialect. This is important as dialects will soon be able to define more than just operations.
Moving forward dialect namespaces cannot contain '.' characters.

This cl also standardizes that operation names must begin with the dialect namespace followed by a '.'.

PiperOrigin-RevId: 227532193
2019-03-29 14:51:22 -07:00
Alex Zinenko 0565067495 LLVM IR Lowering: support "select"
This commit adds support for the "select" operation that lowers directly into
its LLVM IR counterpart.  A simple test is included.

PiperOrigin-RevId: 227527893
2019-03-29 14:51:08 -07:00
Chris Lattner 50a356d118 Simplify FunctionPass to only have a runOnFunction hook, instead of having a
runOnCFG/MLFunction override locations.  Passes that care can handle this
filtering if they choose.  Also, eliminate one needless difference between
CFG/ML functions in the parser.

This is step 30/n towards merging instructions and statements.

PiperOrigin-RevId: 227515912
2019-03-29 14:50:53 -07:00
Smit Hinsu 8f4c1e9f6d Indent auto-generated build method
TESTED manually

PiperOrigin-RevId: 227495854
2019-03-29 14:50:38 -07:00
Nicolas Vasilache 73f5c9c380 [MLIR] Sketch a simple set of EDSCs to declaratively write MLIR
This CL introduces a simple set of Embedded Domain-Specific Components (EDSCs)
in MLIR components:
1. a `Type` system of shell classes that closely matches the MLIR type system. These
types are subdivided into `Bindable` leaf expressions and non-bindable `Expr`
expressions;
2. an `MLIREmitter` class whose purpose is to:
  a. maintain a map of `Bindable` leaf expressions to concrete SSAValue*;
  b. provide helper functionality to specify bindings of `Bindable` classes to
     SSAValue* while verifying comformable types;
  c. traverse the `Expr` and emit the MLIR.

This is used on a concrete example to implement MemRef load/store with clipping in the
LowerVectorTransfer pass. More specifically, the following pseudo-C++ code:
```c++
MLFuncBuilder *b = ...;
Location location = ...;
Bindable zero, one, expr, size;
// EDSL expression
auto access = select(expr < zero, zero, select(expr < size, expr, size - one));
auto ssaValue = MLIREmitter(b)
    .bind(zero, ...)
    .bind(one, ...)
    .bind(expr, ...)
    .bind(size, ...)
    .emit(location, access);
```
is used to emit all the MLIR for a clipped MemRef access.

This simple EDSL can easily be extended to more powerful patterns and should
serve as the counterpart to pattern matchers (and could potentially be unified
once we get enough experience).

In the future, most of this code should be TableGen'd but for now it has
concrete valuable uses: make MLIR programmable in a declarative fashion.

This CL also adds Stmt, proper supporting free functions and rewrites
VectorTransferLowering fully using EDSCs.

The code for creating the EDSCs emitting a VectorTransferReadOp as loops
with clipped loads is:

```c++
  Stmt block = Block({
    tmpAlloc = alloc(tmpMemRefType),
    vectorView = vector_type_cast(tmpAlloc, vectorMemRefType),
    ForNest(ivs, lbs, ubs, steps, {
      scalarValue = load(scalarMemRef, accessInfo.clippedScalarAccessExprs),
      store(scalarValue, tmpAlloc, accessInfo.tmpAccessExprs),
    }),
    vectorValue = load(vectorView, zero),
    tmpDealloc = dealloc(tmpAlloc.getLHS())});
  emitter.emitStmt(block);
```

where `accessInfo.clippedScalarAccessExprs)` is created with:

```c++
select(i + ii < zero, zero, select(i + ii < N, i + ii, N - one));
```

The generated MLIR resembles:

```mlir
    %1 = dim %0, 0 : memref<?x?x?x?xf32>
    %2 = dim %0, 1 : memref<?x?x?x?xf32>
    %3 = dim %0, 2 : memref<?x?x?x?xf32>
    %4 = dim %0, 3 : memref<?x?x?x?xf32>
    %5 = alloc() : memref<5x4x3xf32>
    %6 = vector_type_cast %5 : memref<5x4x3xf32>, memref<1xvector<5x4x3xf32>>
    for %i4 = 0 to 3 {
      for %i5 = 0 to 4 {
        for %i6 = 0 to 5 {
          %7 = affine_apply #map0(%i0, %i4)
          %8 = cmpi "slt", %7, %c0 : index
          %9 = affine_apply #map0(%i0, %i4)
          %10 = cmpi "slt", %9, %1 : index
          %11 = affine_apply #map0(%i0, %i4)
          %12 = affine_apply #map1(%1, %c1)
          %13 = select %10, %11, %12 : index
          %14 = select %8, %c0, %13 : index
          %15 = affine_apply #map0(%i3, %i6)
          %16 = cmpi "slt", %15, %c0 : index
          %17 = affine_apply #map0(%i3, %i6)
          %18 = cmpi "slt", %17, %4 : index
          %19 = affine_apply #map0(%i3, %i6)
          %20 = affine_apply #map1(%4, %c1)
          %21 = select %18, %19, %20 : index
          %22 = select %16, %c0, %21 : index
          %23 = load %0[%14, %i1, %i2, %22] : memref<?x?x?x?xf32>
          store %23, %5[%i6, %i5, %i4] : memref<5x4x3xf32>
        }
      }
    }
    %24 = load %6[%c0] : memref<1xvector<5x4x3xf32>>
    dealloc %5 : memref<5x4x3xf32>
```

In particular notice that only 3 out of the 4-d accesses are clipped: this
corresponds indeed to the number of dimensions in the super-vector.

This CL also addresses the cleanups resulting from the review of the prevous
CL and performs some refactoring to simplify the abstraction.

PiperOrigin-RevId: 227367414
2019-03-29 14:50:23 -07:00
Chris Lattner a250643ec8 Merge together the CFG/ML function paths in the CSE pass. I did a first pass
on this to merge together the classes, but there may be other simplification
possible.  I'll leave that to riverriddle@ as future work.

This is step 29/n towards merging instructions and statements.

PiperOrigin-RevId: 227328680
2019-03-29 14:50:08 -07:00
Chris Lattner 7974889f54 Update and generalize various passes to work on both CFG and ML functions,
simplifying them in minor ways.  The only significant cleanup here
is the constant folding pass.  All the other changes are simple and easy,
but this is still enough to shrink the compiler by 45LOC.

The one pass left to merge is the CSE pass, which will be move involved, so I'm
splitting it out to its own patch (which I'll tackle right after this).

This is step 28/n towards merging instructions and statements.

PiperOrigin-RevId: 227328115
2019-03-29 14:49:52 -07:00
Chris Lattner 3c8fc797de Simplify the remapFunctionAttrs logic, merging CFG/ML function handling.
Remove an unnecessary restriction in forward substitution.  Slightly
simplify LLVM IR lowering, which previously would crash if given an ML
function, it should now produce a clean error if given a function with an
if/for instruction in it, just like it does any other unsupported op.

This is step 27/n towards merging instructions and statements.

PiperOrigin-RevId: 227324542
2019-03-29 14:49:35 -07:00
Chris Lattner 4bd9f93606 Simplify GreedyPatternRewriteDriver now that functions are merged into one
representation, shrinking by 70LOC.  The PatternRewriter class can probably
also be simplified as well, but one step at a time.

This is step 26/n towards merging instructions and statements.  NFC.

PiperOrigin-RevId: 227324218
2019-03-29 14:49:20 -07:00
Uday Bondhugula 18fbc3e170 Drop unusued HyperRectangularSet.h/.cpp, given the new design being worked on.
- drop these ununsed/incomplete sketches given the new design
  @albertcohen is working on, and given that FlatAffineConstraints is now
  stable and fast enough for all the analyses/transforms that depend on it.

PiperOrigin-RevId: 227322739
2019-03-29 14:49:03 -07:00