Previously, EhFrameHdr section computed addresses to which FDEs are
applied to. This is not an ideal design because EhFrameHdr does not
know much about FDEs unless EhFrame passes the information to EhFrameHdr.
It is what we did.
This patch simplifies the code by making EhFrame to compute the
values and pass the cooked information to EhFrameHdr. EhFrameHdr no
longer have to know about the details of FDEs such as FDE encodings.
llvm-svn: 270393
This patch refactors EHOutputSection using SectionPiece struct.
EHRegion class was removed since we can now directly use SectionPiece.
An incomplete support of large CIE/FDE record (> 2^32 bytes) was removed
because it silently created broken executable. There are several places
in the existing code that "size" field is always 4 bytes and at offset 4
in the record, which is not true for 64-bit size records. We will have to
support that in future, but it is better to error out instead of creating
malformed eh_frame sections.
llvm-svn: 270382
This patch adds Size member to SectionPiece so that getRangeAndSize
can just return a SectionPiece instead of a std::pair<SectionPiece *, uint_t>.
Also renamed the function.
llvm-svn: 270346
We were using std::pair to represents pieces of splittable section
contents. It hurt readability because "first" and "second" are not
meaningful. This patch give them names.
One more thing is that piecewise liveness information is stored to
the second element of the pair as a special value of output section
offset. It was confusing, so I defiend a new bit, "Live", in the
new struct.
llvm-svn: 270340
This fixes a potential bug when cross linking very large executables
on LLP64 machines such as Windows. On such platform, uintX_t is 64 bits
while unsigned is 32 bits.
llvm-svn: 270327
Most functions take destination buffers as the first arguments
just like memcpy, so this order is easier to read.
Also simplified the function.
llvm-svn: 270324
Lazy binding is quite important for use case like a shared build of
llvm. Also, if someone wants to disable it, it is better done in the
compiler (disable plt generation).
The only reason to keep it is to make it easier to add a new
architecture. But it doesn't really help much as it is possible to start
with non lazy relocation and plt code but still let the generic part
create a dedicated .got.plt and .rela.plt.
llvm-svn: 269982
If you specify the option in the form of --build-id=0x<hexstring>,
that hexstring is set as a build ID. We observed that the feature
is actually in use in some builds, so we want this feature.
llvm-svn: 269495
win32 was my case.
Before that change test failed with next error for me:
23> ******************** TEST 'lld :: ELF/mips-64-got.s' FAILED ********************
....
23> Command 3 Stderr:
23> relocation R_MIPS_GOT_PAGE out of range
llvm-svn: 269166
This is the option which sorts relocs to optimize dynamic linker performance.
-z combelocs is the default in gold, also it ignores -z nocombreloc,
this patch do the same.
Patch sorts relocations by symbols only and do not create any
DT_REL[A]COUNT entries. That is different with what gold/bfd do.
More information about option is here:
http://www.airs.com/blog/archives/186http://people.redhat.com/jakub/prelink.pdf, p.2
Differential revision: http://reviews.llvm.org/D19528
llvm-svn: 269066
We were previously using an output offset of -1 for both GC'd and tail
merged pieces. We need to distinguish these two cases in order to filter
GC'd symbols from the symbol table -- we were previously asserting when we
asked for the VA of a symbol pointing into a dead piece, which would end
up asking the tail merging string table for an offset even though we hadn't
initialized it properly.
This patch fixes the bug by using an offset of -1 to exclusively mean GC'd
pieces, using 0 for tail merges, and distinguishing the tail merge case from
an offset of 0 by asking the output section whether it is tail merge.
Differential Revision: http://reviews.llvm.org/D19953
llvm-svn: 268604
MIPS N64 ABI introduces .MIPS.options section which specifies miscellaneous
options to be applied to an object/shared/executable file. LLVM as well as
modern versions of GNU tools read and write the only type of the options -
ODK_REGINFO. It is exact copy of .reginfo section used by O32 ABI.
llvm-svn: 268485
Weak undefined symbols resolve to the image base. This is a little strange,
but it allows us to link function calls to such symbols. Normally such a
call will be guarded with a comparison, which will load a zero from the GOT.
There's one example of such a function call in crti.o in Linux's CRT.
As part of this change, I also needed to make the synthetic start and end
symbols image base relative in the case where their sections were empty,
so that PC-relative references to those symbols would continue to work.
Differential Revision: http://reviews.llvm.org/D19844
llvm-svn: 268350
This change simplifies the BuildId classes by removing a few member
functions and variables from them. It should also make it easy to
parallelize hash computation in future because now each BuildId object
see all inputs rather than one at a time.
llvm-svn: 268333
This patch implements a new design for the symbol table that stores
SymbolBodies within a memory region of the Symbol object. Symbols are mutated
by constructing SymbolBodies in place over existing SymbolBodies, rather
than by mutating pointers. As mentioned in the initial proposal [1], this
memory layout helps reduce the cache miss rate by improving memory locality.
Performance numbers:
old(s) new(s)
Without debug info:
chrome 7.178 6.432 (-11.5%)
LLVMgold.so 0.505 0.502 (-0.5%)
clang 0.954 0.827 (-15.4%)
llvm-as 0.052 0.045 (-15.5%)
With debug info:
scylla 5.695 5.613 (-1.5%)
clang 14.396 14.143 (-1.8%)
Performance counter results show that the fewer required indirections is
indeed the cause of the improved performance. For example, when linking
chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and
instructions per cycle increases from 0.78 to 0.83. We are also executing
many fewer instructions (15,516,401,933 down to 15,002,434,310), probably
because we spend less time allocating SymbolBodies.
The new mechanism by which symbols are added to the symbol table is by calling
add* functions on the SymbolTable.
In this patch, I handle local symbols by storing them inside "unparented"
SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating
these SymbolBodies, we can probably do that separately.
I also removed a few members from the SymbolBody class that were only being
used to pass information from the input file to the symbol table.
This patch implements the new design for the ELF linker only. I intend to
prepare a similar patch for the COFF linker.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html
Differential Revision: http://reviews.llvm.org/D19752
llvm-svn: 268178
This remove a fixme, cleans up the weak undef interaction with archives and
lets us keep weak undefs still weak if they resolve to shared.
llvm-svn: 267555
MIPS is the only target requires GOT header. We already have MIPS
specific code in the `GotSection` class, so move MIPS GOT header
generation there and delete redundant stuff like `GotHeaderEntriesNum`
field and `writeGotHeader` method.
Differential Revision: http://reviews.llvm.org/D19465
llvm-svn: 267460
The fix is to handle local symbols referring to SHF_MERGE sections.
Original message:
GC entries of SHF_MERGE sections.
It is a fairly direct extension of the gc algorithm. For merge sections
instead of remembering just a live bit, we remember which offsets
were used.
This reduces the .rodata sections in chromium from 9648861 to 9477472
bytes.
llvm-svn: 267233
These are properties of a symbol name, rather than a particular instance
of a symbol in an object file. We can simplify the code by collecting these
properties in Symbol.
The MustBeInDynSym flag has been renamed ExportDynamic, as its semantics
have been changed to be the same as those of --dynamic-list and
--export-dynamic-symbol, which do not cause hidden symbols to be exported.
Differential Revision: http://reviews.llvm.org/D19400
llvm-svn: 267183
It is a fairly direct extension of the gc algorithm. For merge sections
instead of remembering just a live bit, we remember which offsets were
used.
This reduces the .rodata sections in chromium from 9648861 to 9477472
bytes.
llvm-svn: 267164
It turns out that this will read data from the section to properly
handle Elf_Rel implicit addends.
Sorry for the noise.
Original messages:
Try to fix Windows lld build.
Move getRelocTarget to ObjectFile.
It doesn't use anything from the InputSection.
llvm-svn: 267163
Originally, linker scripts were basically an alternative way to specify
options to the command line options. But as we add more features to hanlde
symbols and sections, many member functions needed to be templated.
Now most the members are templated. It is probably time to template the
entire class.
Previously, LinkerScript is an executor of the linker script as well as
a storage of linker script configurations. This is not suitable to template
the class because when we are reading linker script files, we don't know
the ELF type yet, so we can't instantiate ELF-templated classes.
In this patch, I defined a new class, ScriptConfiguration, to store
linker script configurations. ScriptParser writes parse results to it,
and LinkerScript uses them.
Differential Revision: http://reviews.llvm.org/D19302
llvm-svn: 266908
This reverts commit r266618. It breaks basically everything.
I think VS2013 doesn't interpret this code in the same way.
The size field (at least) is left uninitialized, causing all sorts of havok
(e.g. creating a 34GB file for a trivial hello world program).
The offending compiler reports itself as follows:
c:\release-vs2013>cl /?
Microsoft (R) C/C++ Optimizing Compiler Version 18.00.40629 for x64
Copyright (C) Microsoft Corporation. All rights reserved.
llvm-svn: 266857
With this patch we use the first scan over the relocations to remember
the information we found about them: will them be relaxed, will a plt be
used, etc.
With that the actual relocation application becomes much simpler. That
is particularly true for the interfaces in Target.h.
This unfortunately means that we now do two passes over relocations for
non SHF_ALLOC sections. I think this can be solved by factoring out the
code that scans a single relocation. It can then be used both as a scan
that record info and for a dedicated direct relocation of non SHF_ALLOC
sections.
I also think it is possible to reduce the number of enum values by
representing a target with just an OutputSection and an offset (which
can be from the start or end).
This should unblock adding features like relocation optimizations.
llvm-svn: 266158
It is possible to have FDEs with duplicate PCs if ICF was able to merge
functions with FDEs, or if the input files for some reason contained duplicate
FDEs. We previously weren't handling this correctly when producing the
contents of the .eh_frame_hdr section; we were dropping entries and leaving
null entries at the end of the section, which confused consumers of unwind
data, such as the backtrace() function.
Fix the bug by setting the FDE count to the number of FDEs actually emitted
into .eh_frame_hdr, rather than the number of FDEs in .eh_frame.
Differential Revision: http://reviews.llvm.org/D18911
llvm-svn: 265957
Now MustBeInDynSym is only true if the symbol really must be in the
dynamic symbol table.
IsUsedInRegularObj is only true if the symbol is used in a .o or -u. Not
a .so or a .bc.
A benefit is that this is now done almost entirilly during symbol
resolution. The only exception is copy relocations because of aliases.
This includes a small fix in that protected symbols in .so don't force
executable symbols to be exported.
This also opens the way for implementing internalize for -shared.
llvm-svn: 265826