This makes OpPassManager more of a "container" of passes and not responsible to drive the execution.
As such we also make it constructible publicly, which will allow to build arbitrary pipeline decoupled from the execution. We'll make use of this facility to expose "dynamic pipeline" in the future.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86391
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
- This will enable tweaking IR printing options when enabling printing (for ex,
tweak elideLargeElementsAttrs to create smaller IR logs)
Differential Revision: https://reviews.llvm.org/D83930
Generally speaking, this is bad practice. It also causes the build to
break if there are editor temporary files.
Differential Revision: https://reviews.llvm.org/D79906
This is a wrapper around vector of NamedAttributes that keeps track of whether sorted and does some minimal effort to remain sorted (doing more, e.g., appending attributes in sorted order, could be done in follow up). It contains whether sorted and if a DictionaryAttr is queried, it caches the returned DictionaryAttr along with whether sorted.
Change MutableDictionaryAttr to always return a non-null Attribute even when empty (reserve null cases for errors). To this end change the getter to take a context as input so that the empty DictionaryAttr could be queried. Also create one instance of the empty dictionary attribute that could be reused without needing to lock context etc.
Update infer type op interface to use DictionaryAttr and use NamedAttrList to avoid incurring multiple conversion costs.
Fix bug in sorting helper function.
Differential Revision: https://reviews.llvm.org/D79463
Essentially takes the lld/Common/Threads.h wrappers and moves them to
the llvm/Support/Paralle.h algorithm header.
The changes are:
- Remove policy parameter, since all clients use `par`.
- Rename the methods to `parallelSort` etc to match LLVM style, since
they are no longer C++17 pstl compatible.
- Move algorithms from llvm::parallel:: to llvm::, since they have
"parallel" in the name and are no longer overloads of the regular
algorithms.
- Add range overloads
- Use the sequential algorithm directly when 1 thread is requested
(skips task grouping)
- Fix the index type of parallelForEachN to size_t. Nobody in LLVM was
using any other parameter, and it made overload resolution hard for
for_each_n(par, 0, foo.size(), ...) because 0 is int, not size_t.
Remove Threads.h and update LLD for that.
This is a prerequisite for parallel public symbol processing in the PDB
library, which is in LLVM.
Reviewed By: MaskRay, aganea
Differential Revision: https://reviews.llvm.org/D79390
- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so
After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.
This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.
Differential Revision: https://reviews.llvm.org/D78773
[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB
Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS. This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary. Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.
Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library. Previously, some libraries still used
add_llvm_library. However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM. Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR
A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so. To catch these errors more directly, there's now
mlir_check_all_link_libraries.
To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.
tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067
[MLIR] Move from using target_link_libraries to LINK_LIBS
This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243
Three commits have been squashed to avoid intermediate build breakage.
This is useful for several reasons:
* In some situations the user can guarantee that thread-safety isn't necessary and don't want to pay the cost of synchronization, e.g., when parsing a very large module.
* For things like logging threading is not desirable as the output is not guaranteed to be in stable order.
This flag also subsumes the pass manager flag for multi-threading.
Differential Revision: https://reviews.llvm.org/D79266
These libraries are distinct from other things in Analysis in that they
operate only on core IR concepts. This also simplifies dependencies
so that Dialect -> Analysis -> Parser -> IR. Previously, the parser depended
on portions of the the Analysis directory as well, which sometimes
caused issues with the way the cmake makefile generator discovers
dependencies on generated files during compilation.
Differential Revision: https://reviews.llvm.org/D79240
The current implementation uses CrashRecoveryContext, but this only supports recovering in a certain number of cases. This revision adds a signal handler to support even more situations.
This revision was able to properly generate a reproducer for a segfault in the Inliner, that the current recovery couldn't.
Differential Revision: https://reviews.llvm.org/D78315
This revision adds a mode to the crash reproducer generator to attempt to generate a more local reproducer. This will attempt to generate a reproducer right before the offending pass that fails. This is useful for the majority of failures that are specific to a single pass, and situations where some passes in the pipeline are not registered with a specific tool.
Differential Revision: https://reviews.llvm.org/D78314
This moves the threading check to runOnOperation. This produces a much cleaner interface for the adaptor pass, and will allow for the ability to enable/disable threading in a much cleaner way in the future.
Differential Revision: https://reviews.llvm.org/D78313
Makes the relationship and function clearer. Accordingly rename getAttrList to getMutableAttrDict.
Differential Revision: https://reviews.llvm.org/D79125
These have proved incredibly useful for interleaving values between a range w.r.t to streams. After this revision, the mlir/Support/STLExtras.h is empty. A followup revision will remove it from the tree.
Differential Revision: https://reviews.llvm.org/D78067
Summary: This revision makes the registration of command line options for these two files manual with `registerMLIRContextCLOptions` and `registerAsmPrinterCLOptions` methods. This removes the last remaining static constructors within lib/.
Differential Revision: https://reviews.llvm.org/D77960
Summary: ClassID is a bit janky right now as it involves passing a magic pointer around. This revision hides the internal implementation mechanism within a new class TypeID. This class is a value-typed wrapper around the original ClassID implementation.
Differential Revision: https://reviews.llvm.org/D77768
Summary: This hook allows for passes to specify the command line argument without the need for registration. More concretely this will allow for generating pass crash reproducers without needing to have the passes registered. This should remove the need for production tools to register passes, leaving that solely to development tools like mlir-opt.
Differential Revision: https://reviews.llvm.org/D77907
Summary: With users registering their own dependencies, duplicate pass registration becomes more and more common. This revision relaxes that pass registration be unique. This is safe to assume given that we key on the passID, which is guaranteed to be unique per pass class.
Differential Revision: https://reviews.llvm.org/D77909
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.
Differential Revision: https://reviews.llvm.org/D77350
This will greatly simplify a number of things related to passes:
* Enables generation of pass registration
* Enables generation of boiler plate pass utilities
* Enables generation of pass documentation
This revision focuses on adding the basic structure and adds support for generating the registration for passes in the Transforms/ directory. Future revisions will add more support and move more passes over.
Differential Revision: https://reviews.llvm.org/D76656
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior. This patch explicitly specifies a
keyword when using target_link_libraries().
Differential Revision: https://reviews.llvm.org/D75725
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
This is avoid the user to shoot themselves in the foot and encounter
strange crashes that are confusing until one run with TSAN.
Differential Revision: https://reviews.llvm.org/D75399