Allocate non-volatile registers in order to be compatible with ABI, regarding gpr_save.
Quoted from https://www.ibm.com/docs/en/ssw_aix_72/assembler/assembler_pdf.pdf page55,
> The preferred method of using GPRs is to use the volatile registers first. Next, use the nonvolatile registers
> in descending order, starting with GPR31.
This patch is based on @jsji 's initial draft.
Tested on test-suite and SPEC, found no degradation.
Reviewed By: jsji, ZarkoCA, xingxue
Differential Revision: https://reviews.llvm.org/D100167
This will currently accept the old number of bytes syntax, and convert
it to a scalar. This should be removed in the near future (I think I
converted all of the tests already, but likely missed a few).
Not sure what the exact syntax and policy should be. We can continue
printing the number of bytes for non-generic instructions to avoid
test churn and only allow non-scalar types for generic instructions.
This will currently print the LLT in parentheses, but accept parsing
the existing integers and implicitly converting to scalar. The
parentheses are a bit ugly, but the parser logic seems unable to deal
without either parentheses or some keyword to indicate the start of a
type.
:: (store 1 + 4, addrspace 1)
->
:: (store 1 into undef + 4, addrspace 1)
An offset without a base isn't terribly useful but it's convenient to update
the offset without checking the value. For example, when breaking apart
stores into smaller units
Differential Revision: https://reviews.llvm.org/D97812
Memory operands store a base alignment that does not factor in
the effect of the offset on the alignment.
Previously the printing code only printed the base alignment if
it was different than the size. If there is an offset, the reader
would need to figure out the effective alignment themselves. This
has confused me before and someone else was recently confused on
IRC.
This patch prints the possibly offset adjusted alignment if it is
different than the size. And prints the base alignment if it is
different than the alignment. The MIR parser has been updated to
read basealign in addition to align.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D94344
Summary: Some constants can be handled with less instructions than our current results. And it seems our original approach is not very easy to extend. Therefore this patch proposes to materialize all 64-bit constants by enumerated patterns.
I traversed almost all constants to verified the functionality of these pattens. A traversed comparison of the number of instructions used by the original method and the new method has also been completed, where no degradation was caused by this patch. This patch also passed Bootstrap test and SPEC test.
Improvements of this patch are shown in llvm/test/CodeGen/PowerPC/constants-i64.ll
Reviewed By: steven.zhang, stefanp
Differential Revision: https://reviews.llvm.org/D92089
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592
SUMMARY:
1. in the patch , remove setting storageclass in function .getXCOFFSection and construct function of class MCSectionXCOFF
there are
XCOFF::StorageMappingClass MappingClass;
XCOFF::SymbolType Type;
XCOFF::StorageClass StorageClass;
in the MCSectionXCOFF class,
these attribute only used in the XCOFFObjectWriter, (asm path do not need the StorageClass)
we need get the value of StorageClass, Type,MappingClass before we invoke the getXCOFFSection every time.
actually , we can get the StorageClass of the MCSectionXCOFF from it's delegated symbol.
2. we also change the oprand of branch instruction from symbol name to qualify symbol name.
for example change
bl .foo
extern .foo
to
bl .foo[PR]
extern .foo[PR]
3. and if there is reference indirect call a function bar.
we also add
extern .bar[PR]
Reviewers: Jason liu, Xiangling Liao
Differential Revision: https://reviews.llvm.org/D84765
If a resource can be held for multiple cycles in the schedule model
then an instruction can be placed into the available queue, another
instruction can be scheduled, but the first will not be taken back out if
the two instructions hazard. To fix this make sure that we update the
available queue even on the first MOp of a cycle, pushing available
instructions back into the pending queue if they now conflict.
This happens with some downstream schedules we have around MVE
instruction scheduling where we use ResourceCycles=[2] to show the
instruction executing over two beats. Apparently the test changes here
are OK too.
Differential Revision: https://reviews.llvm.org/D76909
Without this change, names start with 'L' will get created as
temporary symbol in MCContext::createSymbol.
Some other potential prefix considered:
.L, does not work for AIX, as a function start with L will end
up with .L as prefix for its function entry point.
..L could work, but it does not play well with the convention
on AIX that anything start with '.' are considered as entry point.
L. could work, but not sure if it's safe enough, as it's possible
to have suffixes like .something append to a plain L, giving L.something
which is not necessarily a temporary.
That's why we picked L.. for now.
Differential Revision: https://reviews.llvm.org/D80831
The "Align" passed into getMachineMemOperand etc. is the alignment of
the MachinePointerInfo, not the alignment of the memory operation.
(getAlign() on a MachineMemOperand automatically reduces the alignment
to account for this.)
We were passing on wrong (overconservative) alignment in a bunch of
places. Fix a bunch of these, mostly in legalization. And while I'm
here, switch to the new Align APIs.
The test changes are all scheduling changes: the biggest effect of
preserving large alignments is that it improves alias analysis, so the
scheduler has more freedom.
(I was originally just trying to do a minor cleanup in
SelectionDAGBuilder, but I accidentally went deeper down the rabbit
hole.)
Differential Revision: https://reviews.llvm.org/D77687
Previously, getWithOffset() would drop the offset if the base was null.
Because of this, MachineMemOperand would return the wrong result from
getAlign() in these cases. MachineMemOperand stores the alignment of
the pointer without the offset.
A bunch of MIR tests changed because we print the offset now.
Split off from D77687.
Differential Revision: https://reviews.llvm.org/D78049
Summary:
- Remove the no longer used Darwin CalleeSavedRegs
- Combine the SVR464 callee saved regs and AIX64 since the two are (and should be) identical into PPC64
- Update tests for 64-bit CSR change
Reviewers: sfertile, ZarkoCA, cebowleratibm, jasonliu, #powerpc
Reviewed By: sfertile
Subscribers: wuzish, nemanjai, hiraditya, kbarton, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77235
This is a follow up to the previous patch: [AIX] Implement caller
arguments passed in stack memory.
This corrects a defect in AIX 64-bit where an i32 is written to the
stack with stw (4 bytes) rather than the expected std (8 bytes.) Integer
arguments pass on the stack as images of their register representation.
I also took the opportunity to tidy up some of the calling convention
AIX tests I added in my last commit. This patch adds the missed assembly
expected output for the stack arg int case, which would have caught this
problem.
Differential Revision: https://reviews.llvm.org/D75126
The expected output is erroneous and will be corrected alongside a fix
to ensure stack arguments are widened to register width before writing
to the parameter save area.
This patch implements the caller side of placing function call arguments
in stack memory. This removes the current limitation where LLVM on AIX
will report fatal error when arguments can't be contained in registers.
There is a particular oddity that a float argument that passes in a
register and also in stack memory requires that the caller initialize
both. From what AIX "ABI" documentation I have it's not clear that this
needs to be done, however, it is necessary for compatibility with the
AIX XL compiler so I think it's best to implement it the same way.
Note a later patch will follow to address the callee side.
Differential Revision: https://reviews.llvm.org/D73209
Summary:
This patch pushes the AIX vararg unimplemented error diagnostic later
and allows vararg calls so long as all the arguments can be passed in register.
This patch extends the AIX calling convention implementation to initialize
GPR(s) for vararg float arguments. On AIX, both GPR(s) and FPR are allocated
for floating point arguments. The GPR(s) are only initialized for vararg calls,
otherwise the callee is expected to retrieve the float argument in the FPR.
f64 in AIX PPC32 requires special handling in order to allocated and
initialize 2 GPRs. This is performed with bitcast, SRL, truncation to
initialize one GPR for the MSW and bitcast, truncations to initialize
the other GPR for the LSW.
A future patch will follow to add support for arguments passed on the stack.
Patch provided by: cebowleratibm
Reviewers: sfertile, ZarkoCA, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D71013