Commit Graph

380 Commits

Author SHA1 Message Date
Hal Finkel 2345347eb9 Add a disassembler to the PowerPC backend
The tests for the disassembler were adapted from the encoder tests, and for the
most part, the output from the disassembler matches that encoder-test inputs.
There are some places where more-informative mnemonics could be produced
(notably for the branch instructions), and those cases are noted in the tests
with FIXMEs.

Future work includes:

 - Generating more-informative mnemonics when possible (this may also be done
   in the printer).

 - Remove the dependence on positional "numbered" operand-to-variable mapping
   (for both encoding and decoding).

 - Internally using 64-bit instruction variants in 64-bit mode (if this turns
   out to matter).

llvm-svn: 197693
2013-12-19 16:13:01 +00:00
Hal Finkel b4b99e545b Eliminate PPC instruction decoding ambiguities
The instruction definitions in the PPC backend have a number of variants
defined for the same instruction to represent differences between 64-bit and
32-bit semantics. In order to generate a disassembler for the PPC backend, we
need to mark all but one of these as CodeGen only.

No functionality change intended; this is prep work for PPC disassembly
support.

llvm-svn: 197535
2013-12-17 23:05:18 +00:00
Hal Finkel fa50630e43 Remove unused multiclass from PPCInstrInfo.td
llvm-svn: 197100
2013-12-12 00:23:29 +00:00
Hal Finkel ceb1f12d9a Improve instruction scheduling for the PPC POWER7
Aside from a few minor latency corrections, the major change here is a new
hazard recognizer which focuses on better dispatch-group formation on the
POWER7. As with the PPC970's hazard recognizer, the most important thing it
does is avoid load-after-store hazards within the same dispatch group. It uses
the POWER7's special dispatch-group-terminating nop instruction (instead of
inserting multiple regular nop instructions). This new hazard recognizer makes
use of the scheduling dependency graph itself, built using AA information, to
robustly detect the possibility of load-after-store hazards.

significant test-suite performance changes (the error bars are 99.5% confidence
intervals based on 5 test-suite runs both with and without the change --
speedups are negative):

speedups:

MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2
	-0.55171% +/- 0.333168%

MultiSource/Benchmarks/TSVC/CrossingThresholds-dbl/CrossingThresholds-dbl
	-17.5576% +/- 14.598%

MultiSource/Benchmarks/TSVC/Reductions-dbl/Reductions-dbl
	-29.5708% +/- 7.09058%

MultiSource/Benchmarks/TSVC/Reductions-flt/Reductions-flt
	-34.9471% +/- 11.4391%

SingleSource/Benchmarks/BenchmarkGame/puzzle
	-25.1347% +/- 11.0104%

SingleSource/Benchmarks/Misc/flops-8
	-17.7297% +/- 9.79061%

SingleSource/Benchmarks/Shootout-C++/ary3
	-35.5018% +/- 23.9458%

SingleSource/Regression/C/uint64_to_float
	-56.3165% +/- 25.4234%

SingleSource/UnitTests/Vectorizer/gcc-loops
	-18.5309% +/- 6.8496%

regressions:

MultiSource/Benchmarks/ASCI_Purple/SMG2000/smg2000
	18.351% +/- 12.156%

SingleSource/Benchmarks/Shootout-C++/methcall
	27.3086% +/- 14.4733%

llvm-svn: 197099
2013-12-12 00:19:11 +00:00
Hal Finkel 46402a4211 Split some PPC itinerary classes
In preparation for adding scheduling definitions for the POWER7, split some PPC
itinerary classes so that the P7's latencies and hazards can be better
described. For the most part, this means differentiating indexed from non-index
pre-increment loads and stores. Also, differentiate single from
double-precision sqrt.

No functionality change intended (except for a more-specific latency for
single-precision sqrt on the A2).

llvm-svn: 195980
2013-11-30 20:41:13 +00:00
Hal Finkel 3e5a360ba3 Add IIC_ prefix to PPC instruction-class names
This adds the IIC_ prefix to the instruction itinerary class names, giving the
PPC backend a naming convention for itinerary classes that is more consistent
with that used by the X86 and ARM backends.

Instruction scheduling in the PPC backend needs a bunch of cleanup and
improvement (especially for the ooo cores). This is just a preliminary step.

No functionality change intended.

llvm-svn: 195890
2013-11-27 23:26:09 +00:00
David Majnemer 08249a31b2 PPC: Do not introduce ISD nodes for fctid and fctiw
llvm-svn: 191421
2013-09-26 05:22:11 +00:00
David Majnemer 6ad26d3364 PPC: Add support for fctid and fctiw
Encodings were checked against the Power ISA documents and double
checked against binutils.

This fixes PR17350.

llvm-svn: 191419
2013-09-26 04:11:24 +00:00
Roman Divacky 62cb63543b Implement asm support for a few PowerPC bookIII that are needed for assembling
FreeBSD kernel.

llvm-svn: 190618
2013-09-12 17:50:54 +00:00
Hal Finkel 0096dbd50d Mark PPC MFTB and DST (and friends) as deprecated
Use the new instruction deprecation feature to mark mftb (now replaced with
mfspr) and dst (along with the other Altivec cache control instructions) as
deprecated when targeting cores supporting at least ISA v2.03.

llvm-svn: 190605
2013-09-12 14:40:06 +00:00
Hal Finkel 7fe6a5390f PPC: Enable aggressive anti-dependency breaking
Aggressive anti-dependency breaking is enabled by default for all PPC cores.
This provides a general speedup on the P7 and other platforms (among other
factors, the instruction group formation for the non-embedded PPC cores is done
during post-RA scheduling). In order to do this safely, the incompatibility
between uses of the MFOCRF instruction and anti-dependency breaking are
resolved by marking MFOCRF with hasExtraSrcRegAllocReq. As noted in the removed
FIXME, the problem was that MFOCRF's output is sensitive to the identify of the
source register, and always paired with a shift to undo this effect. Because
anti-dependency breaking is unaware of this hidden dependency of the shift
amount on the source register of the MFOCRF instruction, changing that register
must be inhibited.

Two test cases were adjusted: The SjLj test was made more insensitive to
register choices and scheduling; the saveCR test disabled anti-dependency
breaking because part of what it is testing is proper register reuse.

llvm-svn: 190587
2013-09-12 05:24:49 +00:00
Hal Finkel dbc78e1f73 Add the PPC fcpsgn instruction
Modern PPC cores support a floating-point copysign instruction, and we can use
this to lower the FCOPYSIGN node (which is created from calls to the libm
copysign function). A couple of extra patterns are necessary because the
operand types of FCOPYSIGN need not agree.

llvm-svn: 188653
2013-08-19 05:01:02 +00:00
Hal Finkel 2b7b2f373b PPC: Map frin to round() not nearbyint() and rint()
Making use of the recently-added ISD::FROUND, which allows for custom lowering
of round(), the PPC backend will now map frin to round(). Previously, we had
been using frin to lower nearbyint() (and rint() via some custom lowering to
handle the extra fenv flags requirements), but only in fast-math mode because
frin does not tie-to-even. Several users had complained about this behavior,
and this new mapping of frin to round is certainly more appropriate (and does
not require fast-math mode).

In effect, this reverts r178362 (and part of r178337, replacing the nearbyint
mapping with the round mapping).

llvm-svn: 187960
2013-08-08 04:31:34 +00:00
Hal Finkel 40f76d5830 PPC: Add CTR-register clobber to builtin setjmp
Because the builtin longjmp implementation uses a CTR-based indirect jump, when
the control flow arrives at the builtin setjmp call, the CTR register has
necessarily been clobbered. Correspondingly, this adds CTR to the list of
implicit definitions of the builtin setjmp pseudo instruction.

We don't need to add CTR to the implicit definitions of builtin longjmp
because, even though it does clobber the CTR register, the control flow cannot
return to inside the loop unless there is also a builtin setjmp call.

llvm-svn: 186488
2013-07-17 05:35:44 +00:00
Ulrich Weigand e840ee2ca2 [PowerPC] Support time base instructions
This adds support for the old-style time base instructions;
while new programs are supposed to use mfspr, the mftb instructions
are still supported and in use by existing assembler files.

llvm-svn: 185829
2013-07-08 15:20:38 +00:00
Ulrich Weigand c0944b50fe [PowerPC] Support basic compare mnemonics
This adds support for the basic mnemoics (with the L operand) for the
fixed-point compare instructions.  These are defined as aliases for the
already existing CMPW/CMPD patterns, depending on the value of L.

This requires use of InstAlias patterns with immediate literal operands.
To make this work, we need two further changes:

 - define a RegisterPrefix, because otherwise literals 0 and 1 would
   be parsed as literal register names

 - provide a PPCAsmParser::validateTargetOperandClass routine to
   recognize immediate literals (like ARM does)

llvm-svn: 185826
2013-07-08 14:49:37 +00:00
Ulrich Weigand 56b0e7b011 [PowerPC] Add all trap mnemonics
This adds support for all basic and extended variants
of the trap instructions to the asm parser.

llvm-svn: 185638
2013-07-04 14:40:12 +00:00
Ulrich Weigand b86cb7d04b [PowerPC] Add asm parser support for CR expressions
This adds support for specifying condition registers and
condition register fields via expressions using the symbols
defined by the PowerISA, like "4*cr2+eq".

llvm-svn: 185633
2013-07-04 14:24:00 +00:00
Ulrich Weigand 2542b3b17f [PowerPC] Support lmw/stmw in the asm parser
This adds support for the load/store multiple instructions,
currently used by the asm parser only.

llvm-svn: 185564
2013-07-03 18:29:47 +00:00
Ulrich Weigand 49f487e6cd [PowerPC] Use mtocrf when available
Just as with mfocrf, it is also preferable to use mtocrf instead of
mtcrf when only a single CR register is to be written.

Current code however always emits mtcrf.  This probably does not matter
when using an external assembler, since the GNU assembler will in fact
automatically replace mtcrf with mtocrf when possible.  It does create
inefficient code with the integrated assembler, however.

To fix this, this patch adds MTOCRF/MTOCRF8 instruction patterns and
uses those instead of MTCRF/MTCRF8 everything.  Just as done in the
MFOCRF patch committed as 185556, these patterns will be converted
back to MTCRF if MTOCRF is not available on the machine.

As a side effect, this allows to modify the MTCRF pattern to accept
the full range of mask operands for the benefit of the asm parser.

llvm-svn: 185561
2013-07-03 17:59:07 +00:00
Ulrich Weigand d5ebc626d5 [PowerPC] Always use mfocrf if available
When accessing just a single CR register, it is always preferable to
use mfocrf instead of mfcr, if the former is available on the CPU.

Current code makes that distinction in many, but not all places
where a single CR register value is retrieved.  One missing
location is PPCRegisterInfo::lowerCRSpilling.

To fix this and make this simpler in the future, this patch changes
the bulk of the back-end to always assume mfocrf is available and
simply generate it when needed.

On machines that actually do not support mfocrf, the instruction
is replaced by mfcr at the very end, in EmitInstruction.

This has the additional benefit that we no longer need the
MFCRpseud hack, since before EmitInstruction we always have
a MFOCRF instruction pattern, which already models data flow
as required.

The patch also adds the MFOCRF8 version of the instruction,
which was missing so far.

Except for the PPCRegisterInfo::lowerCRSpilling case, no change
in generated code intended.

llvm-svn: 185556
2013-07-03 17:05:42 +00:00
Ulrich Weigand ae9cf5828c [PowerPC] Support mtspr/mfspr in the asm parser
This adds support for the generic forms of mtspr/mfspr
for the asm parser.  The compiler will continue to use
the specialized patters for mtlr etc. since those are
needed to correctly describe data flow.

llvm-svn: 185532
2013-07-03 12:32:41 +00:00
Ulrich Weigand 85c6f7f7a7 [PowerPC] Support all condition register logical instructions
This adds support for all missing condition register logical
instructions and extended mnemonics to the asm parser.

llvm-svn: 185387
2013-07-01 21:40:54 +00:00
Ulrich Weigand f7152a8596 [PowerPC] Also add "msync" alias
This adds an alias for "msync" (which is used on Book E
systems instead of "sync").

llvm-svn: 185375
2013-07-01 20:39:50 +00:00
Ulrich Weigand 7a9fcdf6fb [PowerPC] Add "wait" instruction
This adds the "wait" instruction and its extended mnemonics.

llvm-svn: 185350
2013-07-01 17:21:23 +00:00
Ulrich Weigand 98fcc7b6bc [PowerPC] Support "eieio" instruction
This adds support for the "eieio" instruction to
the asm parser.

llvm-svn: 185349
2013-07-01 17:06:26 +00:00
Ulrich Weigand 797f1a3f5b [PowerPC] Add variants of "sync" instruction
This adds support for the "sync $L" instruction with operand,
and provides aliases for "lwsync" and "ptesync".

llvm-svn: 185344
2013-07-01 16:37:52 +00:00
Ulrich Weigand 5a02a02b41 [PowerPC] Accept 17-bit signed immediates for addis
The assembler currently strictly verifies that immediates for
s16imm operands are in range (-32768 ... 32767).  This matches
the behaviour of the GNU assembler, with one exception: gas
allows, as a special case, operands in an extended range
(-65536 .. 65535) for the addis instruction only (and its
extended mnemonic lis).

The main reason for this seems to be to allow using unsigned
16-bit operands for lis, e.g. like lis %r1, 0xfedc.

Since this has been supported by gas for a long time, and
assembler source code seen "in the wild" actually exploits
this feature, this patch adds equivalent support to LLVM
for compatibility reasons.

llvm-svn: 184946
2013-06-26 13:49:53 +00:00
Ulrich Weigand fd3ad693e8 [PowerPC] Support symbolic u16imm operands
Currently, all instructions taking s16imm operands support symbolic
operands.  However, for u16imm operands, we only support actual
immediate integers.  This causes the assembler to reject code like

  ori %r5, %r5, symbol@l

This patch changes the u16imm operand definition to likewise
accept symbolic operands.  In fact, s16imm and u16imm can
share the same encoding routine, now renamed to getImm16Encoding.

llvm-svn: 184944
2013-06-26 13:49:15 +00:00
Ulrich Weigand ad873cdb2b [PowerPC] Add extended rotate/shift mnemonics
This adds all missing extended rotate/shift mnemonics to the asm parser.

llvm-svn: 184834
2013-06-25 13:17:41 +00:00
Ulrich Weigand 4069e24bd3 [PowerPC] Add extended subtract mnemonics
This adds support for the extended subtract mnemonics to the asm parser:
   subi
   subis
   subic
   subic.
   sub
   sub.
   subc
   subc.
 

llvm-svn: 184832
2013-06-25 13:16:48 +00:00
Ulrich Weigand 6ca71579db [PowerPC] Support some miscellaneous mnemonics in the asm parser
This adds support for the following extended mnemonics:
  xnop
  mr.
  not
  not.
  la

llvm-svn: 184767
2013-06-24 18:08:03 +00:00
Ulrich Weigand 86247b6e27 [PowerPC] Add predicted forms of branches
This adds support for the predicted forms of branches (+/-).
There are three cases to consider:
- Branches using a PPC::Predicate code
  For these, I've added new PPC::Predicate codes corresponding
  to the BO values for predicted branch forms, and updated insn
  printing to print them correctly.  I've also added new aliases
  for the asm parser matching the new forms.
- bt/bf
  I've added new aliases matching to gBC etc.
- bd(n)z variants
  I've added new instruction patterns for the predicted forms.

In all cases, the new patterns are used for the asm parser only.
(The new infrastructure ought to be sufficient to allow use by
the compiler too at some point.)

llvm-svn: 184754
2013-06-24 16:52:04 +00:00
Ulrich Weigand fedd5a756e [PowerPC] Add t/f branch mnemonics to asm parser
This adds the bt/bf/bd(n)zt/bd(n)zf mnemonics as aliases for the
asm parser, resolving to the generic conditional patterns.

llvm-svn: 184725
2013-06-24 12:49:20 +00:00
Ulrich Weigand 824b7d8dfd [PowerPC] Support generic conditional branches in asm parser
This adds instruction patterns to cover the generic forms of
the conditional branch instructions.  This allows the assembler
to support the generic mnemonics.

The compiler will still generate the various specific forms
of the instruction that were already supported.

llvm-svn: 184722
2013-06-24 11:55:21 +00:00
Ulrich Weigand b6a30d159e [PowerPC] Support absolute branches
There is currently only limited support for the "absolute" variants
of branch instructions.  This patch adds support for the absolute
variants of all branches that are currently otherwise supported.

This requires adding new fixup types so that the correct variant
of relocation type can be selected by the object writer.

While the compiler will continue to usually choose the relative
branch variants, this will allow the asm parser to fully support
the absolute branches, with either immediate (numerical) or
symbolic target addresses.

No change in code generation intended.

llvm-svn: 184721
2013-06-24 11:03:33 +00:00
Ulrich Weigand 5b9d591ad1 [PowerPC] Support bd(n)zl and bd(n)zlrl
This adds support for the bd(n)zl and bd(n)zlrl instructions.
The patterns are currently used for the asm parser only.

llvm-svn: 184720
2013-06-24 11:02:38 +00:00
Ulrich Weigand d20e91edad [PowerPC] Support b(cond)l in the asm parser
This patch adds support for the conditional variants of bl.
The pattern is currently used by the asm parser only.

llvm-svn: 184719
2013-06-24 11:02:19 +00:00
Ulrich Weigand 1847bb811e [PowerPC] Support blrl and variants in the asm parser
This patch adds support for blrl and its conditional variants.
The patterns are (currently) used for the asm parser only.

llvm-svn: 184718
2013-06-24 11:01:55 +00:00
Ulrich Weigand 865a1efc13 [PowerPC] Support compare mnemonics with implied CR0
Just like for branch mnemonics (where support was recently added), the
assembler is supposed to support extended mnemonics for the compare
instructions where no condition register is specified explicitly
(and CR0 is assumed implicitly).

This patch adds support for those extended compare mnemonics.


Index: llvm-head/test/MC/PowerPC/ppc64-encoding-ext.s
===================================================================
--- llvm-head.orig/test/MC/PowerPC/ppc64-encoding-ext.s
+++ llvm-head/test/MC/PowerPC/ppc64-encoding-ext.s
@@ -449,21 +449,37 @@
 
 # CHECK: cmpdi 2, 3, 128                 # encoding: [0x2d,0x23,0x00,0x80]
          cmpdi 2, 3, 128
+# CHECK: cmpdi 0, 3, 128                 # encoding: [0x2c,0x23,0x00,0x80]
+         cmpdi 3, 128
 # CHECK: cmpd 2, 3, 4                    # encoding: [0x7d,0x23,0x20,0x00]
          cmpd 2, 3, 4
+# CHECK: cmpd 0, 3, 4                    # encoding: [0x7c,0x23,0x20,0x00]
+         cmpd 3, 4
 # CHECK: cmpldi 2, 3, 128                # encoding: [0x29,0x23,0x00,0x80]
          cmpldi 2, 3, 128
+# CHECK: cmpldi 0, 3, 128                # encoding: [0x28,0x23,0x00,0x80]
+         cmpldi 3, 128
 # CHECK: cmpld 2, 3, 4                   # encoding: [0x7d,0x23,0x20,0x40]
          cmpld 2, 3, 4
+# CHECK: cmpld 0, 3, 4                   # encoding: [0x7c,0x23,0x20,0x40]
+         cmpld 3, 4
 
 # CHECK: cmpwi 2, 3, 128                 # encoding: [0x2d,0x03,0x00,0x80]
          cmpwi 2, 3, 128
+# CHECK: cmpwi 0, 3, 128                 # encoding: [0x2c,0x03,0x00,0x80]
+         cmpwi 3, 128
 # CHECK: cmpw 2, 3, 4                    # encoding: [0x7d,0x03,0x20,0x00]
          cmpw 2, 3, 4
+# CHECK: cmpw 0, 3, 4                    # encoding: [0x7c,0x03,0x20,0x00]
+         cmpw 3, 4
 # CHECK: cmplwi 2, 3, 128                # encoding: [0x29,0x03,0x00,0x80]
          cmplwi 2, 3, 128
+# CHECK: cmplwi 0, 3, 128                # encoding: [0x28,0x03,0x00,0x80]
+         cmplwi 3, 128
 # CHECK: cmplw 2, 3, 4                   # encoding: [0x7d,0x03,0x20,0x40]
          cmplw 2, 3, 4
+# CHECK: cmplw 0, 3, 4                   # encoding: [0x7c,0x03,0x20,0x40]
+         cmplw 3, 4
 
 # FIXME: Trap mnemonics
 
Index: llvm-head/lib/Target/PowerPC/PPCInstrInfo.td
===================================================================
--- llvm-head.orig/lib/Target/PowerPC/PPCInstrInfo.td
+++ llvm-head/lib/Target/PowerPC/PPCInstrInfo.td
@@ -2201,3 +2201,12 @@ defm : BranchExtendedMnemonic<"ne", 68>;
 defm : BranchExtendedMnemonic<"nu", 100>;
 defm : BranchExtendedMnemonic<"ns", 100>;
 
+def : InstAlias<"cmpwi $rA, $imm", (CMPWI CR0, gprc:$rA, s16imm:$imm)>;
+def : InstAlias<"cmpw $rA, $rB", (CMPW CR0, gprc:$rA, gprc:$rB)>;
+def : InstAlias<"cmplwi $rA, $imm", (CMPLWI CR0, gprc:$rA, u16imm:$imm)>;
+def : InstAlias<"cmplw $rA, $rB", (CMPLW CR0, gprc:$rA, gprc:$rB)>;
+def : InstAlias<"cmpdi $rA, $imm", (CMPDI CR0, g8rc:$rA, s16imm:$imm)>;
+def : InstAlias<"cmpd $rA, $rB", (CMPD CR0, g8rc:$rA, g8rc:$rB)>;
+def : InstAlias<"cmpldi $rA, $imm", (CMPLDI CR0, g8rc:$rA, u16imm:$imm)>;
+def : InstAlias<"cmpld $rA, $rB", (CMPLD CR0, g8rc:$rA, g8rc:$rB)>;
+

llvm-svn: 184435
2013-06-20 16:15:12 +00:00
Ulrich Weigand 4c44032aa1 [PowerPC] Support extended sc mnemonic
A plain "sc" without argument is supposed to be treated like "sc 0"
by the assembler.  This patch adds a corresponding alias.

Problem reported by Joerg Sonnenberger.

llvm-svn: 183687
2013-06-10 17:19:43 +00:00
Ulrich Weigand aa4a2d71aa [PowerPC] Support branch mnemonics with implied CR0
The extended branch mnemonics are supposed to use an implied CR0
if there is no explicit condition register specified.  This patch
adds extra variants of the mnemonics to this effect.

Problem reported by Joerg Sonnenberger.

llvm-svn: 183686
2013-06-10 17:19:15 +00:00
Ulrich Weigand 397406259e [PowerPC] Use multiclass to generate extended branch mnemonics
This patch removes some redundancy by generating the extended branch
mnemonics via a multiclass.

No change in behaviour expected.

llvm-svn: 183685
2013-06-10 17:18:29 +00:00
Ulrich Weigand 9948546923 [PowerPC] Remove symbolLo/symbolHi instruction operand types
Now that there is no longer any distinction between symbolLo
and symbolHi operands in either printing, encoding, or parsing,
the operand types can be removed in favor of simply using
s16imm.

This completes the patch series to decouple lo/hi operand part
processing from the particular instruction whose operand it is.

No change in code generation expected from this patch.

llvm-svn: 182618
2013-05-23 22:48:06 +00:00
Ulrich Weigand 41789de165 [PowerPC] Clean up generation of ha16() / lo16() markers
When targeting the Darwin assembler, we need to generate markers ha16() and
lo16() to designate the high and low parts of a (symbolic) immediate.  This
is necessary not just for plain symbols, but also for certain symbolic
expression, typically along the lines of ha16(A - B).  The latter doesn't
work when simply using VariantKind flags on the symbol reference.
This is why the current back-end uses hacks (explicitly called out as such
via multiple FIXMEs) in the symbolLo/symbolHi print methods.

This patch uses target-defined MCExpr codes to represent the Darwin
ha16/lo16 constructs, following along the lines of the equivalent solution
used by the ARM back end to handle their :upper16: / :lower16: markers.
This allows us to get rid of special handling both in the symbolLo/symbolHi
print method and in the common code MCExpr::print routine.  Instead, the
ha16 / lo16 markers are printed simply in a custom print routine for the
target MCExpr types.  (As a result, the symbolLo/symbolHi print methods
can now replaced by a single printS16ImmOperand routine that also handles
symbolic operands.)

The patch also provides a EvaluateAsRelocatableImpl routine to handle
ha16/lo16 constructs.  This is not actually used at the moment by any
in-tree code, but is provided as it makes merging into David Fang's
out-of-tree Mach-O object writer simpler.

Since there is no longer any need to treat VK_PPC_GAS_HA16 and
VK_PPC_DARWIN_HA16 differently, they are merged into a single
VK_PPC_ADDR16_HA (and likewise for the _LO16 types).

llvm-svn: 182616
2013-05-23 22:26:41 +00:00
Bill Schmidt f88571e027 Change some PowerPC PatLeaf definitions to ImmLeaf for fast-isel.
Using PatLeaf rather than ImmLeaf when defining immediate predicates
prevents simple patterns using those predicates from being recognized
for fast instruction selection.  This patch replaces the immSExt16
PatLeaf predicate with two ImmLeaf predicates, imm32SExt16 and
imm64SExt16, allowing a few more patterns to be recognized (ADDI,
ADDIC, MULLI, ADDI8, and ADDIC8).  Using the new predicates does not
help for LI, LI8, SUBFIC, and SUBFIC8 because these are rejected for
other reasons, but I see no reason to retain the PatLeaf predicate.

No functional change intended, and thus no test cases yet.  This is
preliminary work for enabling fast-isel support for PowerPC.  When
that support is ready, we'll be able to test this function.

llvm-svn: 182510
2013-05-22 20:09:24 +00:00
Hal Finkel 0859ef29d5 Rename PPC MTCTRse to MTCTRloop
As the pairing of this instruction form with the bdnz/bdz branches is now
enforced by the verification pass, make it clear from the name that these
are used only for counter-based loops.

No functionality change intended.

llvm-svn: 182296
2013-05-20 16:08:37 +00:00
Ulrich Weigand 2dbe06a987 [PowerPC] Fix hi/lo encoding in old-style code emitter
This patch implements the equivalent change to r182091/r182092
in the old-style code emitter.  Instead of having two separate
16-bit immediate encoding routines depending on the instruction,
this patch introduces a single encoder that checks the machine
operand flags to decide whether the low or high half of a
symbol address is required.

Since now both encoders make no further distinction between
"symbolLo" and "symbolHi", the .td operand can now use a
single getS16ImmEncoding method.

Tested by running the old-style JIT tests on 32-bit Linux.

llvm-svn: 182097
2013-05-17 14:14:12 +00:00
Ulrich Weigand 9d980cbdb9 [PowerPC] Use true offset value in "memrix" machine operands
This is the second part of the change to always return "true"
offset values from getPreIndexedAddressParts, tackling the
case of "memrix" type operands.

This is about instructions like LD/STD that only have a 14-bit
field to encode immediate offsets, which are implicitly extended
by two zero bits by the machine, so that in effect we can access
16-bit offsets as long as they are a multiple of 4.

The PowerPC back end currently handles such instructions by
carrying the 14-bit value (as it will get encoded into the
actual machine instructions) in the machine operand fields
for such instructions.  This means that those values are
in fact not the true offset, but rather the offset divided
by 4 (and then truncated to an unsigned 14-bit value).

Like in the case fixed in r182012, this makes common code
operations on such offset values not work as expected.
Furthermore, there doesn't really appear to be any strong
reason why we should encode machine operands this way.

This patch therefore changes the encoding of "memrix" type
machine operands to simply contain the "true" offset value
as a signed immediate value, while enforcing the rules that
it must fit in a 16-bit signed value and must also be a
multiple of 4.

This change must be made simultaneously in all places that
access machine operands of this type.  However, just about
all those changes make the code simpler; in many cases we
can now just share the same code for memri and memrix
operands.

llvm-svn: 182032
2013-05-16 17:58:02 +00:00
Hal Finkel 25c1992bc7 Implement PPC counter loops as a late IR-level pass
The old PPCCTRLoops pass, like the Hexagon pass version from which it was
derived, could only handle some simple loops in canonical form. We cannot
directly adapt the new Hexagon hardware loops pass, however, because the
Hexagon pass contains a fundamental assumption that non-constant-trip-count
loops will contain a guard, and this is not always true (the result being that
incorrect negative counts can be generated). With this commit, we replace the
pass with a late IR-level pass which makes use of SE to calculate the
backedge-taken counts and safely generate the loop-count expressions (including
any necessary max() parts). This IR level pass inserts custom intrinsics that
are lowered into the desired decrement-and-branch instructions.

The most fragile part of this new implementation is that interfering uses of
the counter register must be detected on the IR level (and, on PPC, this also
includes any indirect branches in addition to function calls). Also, to make
all of this work, we need a variant of the mtctr instruction that is marked
as having side effects. Without this, machine-code level CSE, DCE, etc.
illegally transform the resulting code. Hopefully, this can be improved
in the future.

This new pass is smaller than the original (and much smaller than the new
Hexagon hardware loops pass), and can handle many additional cases correctly.
In addition, the preheader-creation code has been copied from LoopSimplify, and
after we decide on where it belongs, this code will be refactored so that it
can be explicitly shared (making this implementation even smaller).

The new test-case files ctrloop-{le,lt,ne}.ll have been adapted from tests for
the new Hexagon pass. There are a few classes of loops that this pass does not
transform (noted by FIXMEs in the files), but these deficiencies can be
addressed within the SE infrastructure (thus helping many other passes as well).

llvm-svn: 181927
2013-05-15 21:37:41 +00:00