Credit goes to Gor Nishanov for putting together the fix in
https://reviews.llvm.org/D33733!
This patch is essentially me patching it locally and writing some test
cases to convince myself that it was necessary for GNU statement
expressions with branches as well as coroutines. I'll ask Gor to land
his patch with just the coroutines test.
During LValue expression evaluation, references can be bound to
anything, really: call results, aggregate temporaries, local variables,
global variables, or indirect arguments. We really only want to spill
instructions that were emitted as part of expression evaluation, and
static allocas are not that.
llvm-svn: 304335
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential revision: https://reviews.llvm.org/D32550
llvm-svn: 302572
Summary:
Because of the existence branches out of GNU statement expressions, it
is possible that emitting cleanups for a full expression may cause the
new insertion point to not be dominated by the result of the inner
expression. Consider this example:
struct Foo { Foo(); ~Foo(); int x; };
int g(Foo, int);
int f(bool cond) {
int n = g(Foo(), ({ if (cond) return 0; 42; }));
return n;
}
Before this change, result of the call to 'g' did not dominate its use
in the store to 'n'. The early return exit from the statement expression
branches to a shared cleanup block, which ends in a switch between the
fallthrough destination (the assignment to 'n') or the function exit
block.
This change solves the problem by spilling and reloading expression
evaluation results when any of the active cleanups have branches.
I audited the other call sites of enterFullExpression, and they don't
appear to keep and Values live across the site of the cleanup, except in
ARC code. I wasn't able to create a test case for ARC that exhibits this
problem, though.
Reviewers: rjmccall, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D30590
llvm-svn: 297084
With all MaterializeTemporaryExprs coming with a ExprWithCleanups, it's
easy to add correct lifetime.end marks into the right RunCleanupsScope.
Differential Revision: http://reviews.llvm.org/D20499
llvm-svn: 274385
landing pads.
Previously, lifetime.end intrinsics were inserted only on normal control
flows. This prevented StackColoring from merging stack slots for objects
that were destroyed on the exception handling control flow since it
couldn't tell their lifetime ranges were disjoint. This patch fixes
code-gen to emit the intrinsic on both control flows.
rdar://problem/22181976
Differential Revision: http://reviews.llvm.org/D18196
llvm-svn: 265197
It was copying an EHCleanupStack::Cleanup object into a
SmallVector<char>, with a comment saying that SmallVector's alignment is
always large enough. Unfortunately, that isn't actually true after
r162331 in 2012.
Expand the code (somewhat distastefully) to get a stack allocation with
a correct alignment.
llvm-svn: 256619
This works around PR25162. The MSVC tables make it very difficult to
correctly inline a C++ destructor that contains try / catch. We've
attempted to address PR25162 in LLVM's backend, but it feels pretty
infeasible. MSVC and ICC both appear to avoid inlining such complex
destructors.
Long term, we want to fix this by making the inliner smart enough to
know when it is inlining into a cleanup, so it can inline simple
destructors (~unique_ptr and ~vector) while avoiding destructors
containing try / catch.
llvm-svn: 251576
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
Summary:
The signatures of the methods in LLVM for creating EH pads/rets are changing
to require token arguments on rets and assume token return type on pads.
Update creation code accordingly.
Reviewers: majnemer, rnk
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12109
llvm-svn: 245798
The new EH instructions make it possible for LLVM to generate .xdata
tables that the MSVC personality routines will be happy about. Because
this is experimental, hide it behind a -cc1 flag (-fnew-ms-eh).
Differential Revision: http://reviews.llvm.org/D11405
llvm-svn: 243767
Some const-correctness changes snuck in here too, since they were in the
area of code I was modifying.
This seems to make Clang actually work without Bus Error on
32bit-sparc.
Follow-up patches will factor out a trailing-object helper class, to
make classes using the idiom of appending objects to other objects
easier to understand, and to ensure (with static_assert) that required
alignment guarantees continue to hold.
Differential Revision: http://reviews.llvm.org/D10272
llvm-svn: 242554
This reverts commit r234700. It turns out that the lifetime markers
were not the cause of Chromium failing but a bug which was uncovered by
optimizations exposed by the markers.
llvm-svn: 235553
Now that TailRecursionElimination has been fixed with r222354, the
threshold on size for lifetime marker insertion can be removed. This
only affects named temporary though, as the patch for unnamed temporaries
is still in progress.
My previous commit (r222993) was not handling debuginfo correctly, but
this could only be seen with some asan tests. Basically, lifetime markers
are just instrumentation for the compiler's usage and should not affect
debug information; however, the cleanup infrastructure was assuming it
contained only destructors, i.e. actual code to be executed, and was
setting the breakpoint for the end of the function to the closing '}', and
not the return statement, in order to show some destructors have been
called when leaving the function. This is wrong when the cleanups are only
lifetime markers, and this is now fixed.
llvm-svn: 234581
_CxxFrameHandler3 calls terminate if a cleanup action throws, regardless
of what bits you put in the xdata tables. There's no need to model this
in the IR, since we just have to take it out later.
llvm-svn: 234448
Now if you break on a dtor and go 'up' in your debugger (or you get an
asan failure in a dtor) during an exception unwind, you'll have more
context. Instead of all dtors appearing to be called from the '}' of the
function, they'll be attributed to the end of the scope of the variable,
the same as the non-exceptional dtor call.
This doesn't /quite/ remove all uses of CurEHLocation (which might be
nice to remove, for a few reasons) - it's still used to choose the
location for some other work in the landing pad. It'd be nice to
attribute that code to the same location as the exception calls within
the block and to remove CurEHLocation.
llvm-svn: 228181
distinction between the different use-cases. With the previous default
behavior we would occasionally emit empty debug locations in situations
where they actually were strictly required (= on invoke insns).
We now have a choice between defaulting to an empty location or an
artificial location.
Specifically, this fixes a bug caused by a missing debug location when
emitting C++ EH cleanup blocks from within an artificial function, such as
an ObjC destroy helper function.
rdar://problem/19670595
llvm-svn: 228003
Several pieces of code were relying on implicit debug location setting
which usually lead to incorrect line information anyway. So I've fixed
those (in r225955 and r225845) separately which should pave the way for
this commit to be cleanly reapplied.
The reason these implicit dependencies resulted in crashes with this
patch is that the debug location would no longer implicitly leak from
one place to another, but be set back to invalid. Once a call with
no/invalid location was emitted, if that call was ever inlined it could
produce invalid debugloc chains and assert during LLVM's codegen.
There may be further cases of such bugs in this patch - they're hard to
flush out with regression testing, so I'll keep an eye out for reports
and investigate/fix them ASAP if they come up.
Original commit message:
Reapply "DebugInfo: Generalize debug info location handling"
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225956
This reverts commit r225000, r225021, r225083, r225086, r225090.
The root change (r225000) still has several issues where it's caused
calls to be emitted without debug locations. This causes assertion
failures if/when those calls are inlined.
I'll work up some test cases and fixes before recommitting this.
llvm-svn: 225555
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225000
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224941
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224385
Summary:
The current code uses memset to re-initialize EHCleanupScope objects
with breaks the assumptions of the upcoming asan's intra-object-overflow checker.
If there is no DTOR, the new checker will refuse to work.
Test Plan: bootstrap with asan
Reviewers: rnk
Reviewed By: rnk
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5656
llvm-svn: 219331
r203364: what was use_iterator is now user_iterator, and there is
a use_iterator for directly iterating over the uses.
This also switches to use the range-based APIs where appropriate.
llvm-svn: 203365
I misunderstood the discussion on this. The complexity here is
justified by the malloc overhead it saves.
This reverts commit r199302.
llvm-svn: 199700
class and use it pervasively to restore debug locations.
Fixes an interaction between cleanup and EH that caused the location
to not be restored properly after emitting a landing pad.
rdar://problem/15208190
llvm-svn: 199444
Way back in r129652 we tried to avoid emitting an empty block at -O0
for switch cases that did nothing but break. This led to a poor
debugging experience as reported in PR9796, so we disabled the
optimization for -O0 but left it in for higher optimization levels in
r154420.
Since the whole point of this was to improve -O0, it's silly to keep
the complexity at all.
llvm-svn: 199302