scalarizePHI only looked for phis that have exactly two uses - the "latch"
use, and an extract. Unfortunately, we can not assume all equivalent extracts
are CSE'd, since InstCombine itself may create an extract which is a duplicate
of an existing one. This extends it to handle several distinct extracts from
the same index.
This should fix at least some of the performance regressions from PR27988.
Differential Revision: http://reviews.llvm.org/D20983
llvm-svn: 271961
Previously, whenever we needed a vector IV, we would create it on the fly,
by splatting the scalar IV and adding a step vector. Instead, we can create a
real vector IV. This tends to save a couple of instructions per iteration.
This only changes the behavior for the most basic case - integer primary
IVs with a constant step.
Differential Revision: http://reviews.llvm.org/D20315
llvm-svn: 271410
This change prevents the loop vectorizer from vectorizing when all of the vector
types it generates will be scalarized. I've run into this problem on the PPC's QPX
vector ISA, which only holds floating-point vector types. The loop vectorizer
will, however, happily vectorize loops with purely integer computation. Here's
an example:
LV: The Smallest and Widest types: 32 / 32 bits.
LV: The Widest register is: 256 bits.
LV: Found an estimated cost of 0 for VF 1 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 1 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 1 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 1 for VF 1 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 1 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 1 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 1 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Scalar loop costs: 3.
LV: Found an estimated cost of 0 for VF 2 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 2 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 2 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 2 for VF 2 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 2 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 2 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 2 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Vector loop of width 2 costs: 2.
LV: Found an estimated cost of 0 for VF 4 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 4 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 4 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 4 for VF 4 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 4 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 4 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 4 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Vector loop of width 4 costs: 1.
...
LV: Selecting VF: 8.
LV: The target has 32 registers
LV(REG): Calculating max register usage:
LV(REG): At #0 Interval # 0
LV(REG): At #1 Interval # 1
LV(REG): At #2 Interval # 2
LV(REG): At #4 Interval # 1
LV(REG): At #5 Interval # 1
LV(REG): VF = 8
The problem is that the cost model here is not wrong, exactly. Since all of
these operations are scalarized, their cost (aside from the uniform ones) are
indeed VF*(scalar cost), just as the model suggests. In fact, the larger the VF
picked, the lower the relative overhead from the loop itself (and the
induction-variable update and check), and so in a sense, picking the largest VF
here is the right thing to do.
The problem is that vectorizing like this, where all of the vectors will be
scalarized in the backend, isn't really vectorizing, but rather interleaving.
By itself, this would be okay, but then the vectorizer itself also interleaves,
and that's where the problem manifests itself. There's aren't actually enough
scalar registers to support the normal interleave factor multiplied by a factor
of VF (8 in this example). In other words, the problem with this is that our
register-pressure heuristic does not account for scalarization.
While we might want to improve our register-pressure heuristic, I don't think
this is the right motivating case for that work. Here we have a more-basic
problem: The job of the vectorizer is to vectorize things (interleaving aside),
and if the IR it generates won't generate any actual vector code, then
something is wrong. Thus, if every type looks like it will be scalarized (i.e.
will be split into VF or more parts), then don't consider that VF.
This is not a problem specific to PPC/QPX, however. The problem comes up under
SSE on x86 too, and as such, this change fixes PR26837 too. I've added Sanjay's
reduced test case from PR26837 to this commit.
Differential Revision: http://reviews.llvm.org/D18537
llvm-svn: 264904
Summary:
If we don't have the first and last access of an interleaved load group,
the first and last wide load in the loop can do an out of bounds
access. Even though we discard results from speculative loads,
this can cause problems, since it can technically generate page faults
(or worse).
We now discard interleaved load groups that don't have the first and
load in the group.
Reviewers: hfinkel, rengolin
Subscribers: rengolin, llvm-commits, mzolotukhin, anemet
Differential Revision: http://reviews.llvm.org/D17332
llvm-svn: 261331
This adds a basic cost model for interleaved-access vectorization (and a better
default for shuffles), and enables interleaved-access vectorization by default.
The relevant difference from the default cost model for interleaved-access
vectorization, is that on PPC, the shuffles that end up being used are *much*
cheaper than modeling the process with insert/extract pairs (which are
quite expensive, especially on older cores).
llvm-svn: 246824
On the A2, with an eye toward QPX unaligned-load merging, we should always use
aggressive interleaving. It is generally superior to only using concatenation
unrolling.
llvm-svn: 246819
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
For the purpose of calculating the cost of the loop at various vectorization
factors, we need to count dependencies of consecutive pointers as uniforms
(which means that the VF = 1 cost is used for all overall VF values).
For example, the TSVC benchmark function s173 has:
...
%3 = add nsw i64 %indvars.iv, 16000
%arrayidx8 = getelementptr inbounds %struct.GlobalData* @global_data, i64 0, i32 0, i64 %3
...
and we must realize that the add will be a scalar in order to correctly deduce
it to be profitable to vectorize this on PowerPC with VSX enabled. In fact, all
dependencies of a consecutive pointer must be a scalar (uniform), and so we
simply need to add all consecutive pointers to the worklist that currently
detects collects uniforms.
Fixes PR19296.
llvm-svn: 205387