The code assumed that we process instructions in basic block order. FastISel
processes instructions in reverse basic block order. We need to pre-assign
virtual registers before selecting otherwise we get def-use relationships wrong.
This only affects code with swifterror registers.
rdar://32659327
llvm-svn: 305484
In preparation for doing storemerge post-legalization, reorder
visitSTORE passes to move pre/post-index combining after store
merge. Reordered passes other than store merge are unaffected.
llvm-svn: 305473
As all store merges checks are based on the memory operation
performed, allow use of truncated stores and extended loads as valid
input candidates for merging.
llvm-svn: 305468
Add support for modulo for targets that have hardware division and for
those that don't. When hardware division is not available, we have to
choose the correct libcall to use. This is generally straightforward,
except for AEABI.
The AEABI variant is trickier than the other libcalls because it
returns { quotient, remainder }, instead of just one value like the
other libcalls that we've seen so far. Therefore, we need to use custom
lowering for it. However, we don't want to have too much special code,
so we refactor the target-independent code in the legalizer by adding a
helper for replacing an instruction with a libcall. This helper is used
by the legalizer itself when dealing with simple calls, and also by the
custom ARM legalization for the more complicated AEABI divmod calls.
llvm-svn: 305459
Summary:
At present, `-profile-guided-section-prefix` is a `cl::Optional` option, which means it demands to be passed exactly zero or one times. Our build system makes it pretty tricky to guarantee this. We often accidentally pass the flag more than once (but always with the same "false" value) which results in an error, after which compilation fails:
```
clang (LLVM option parsing): for the -profile-guided-section-prefix option: may only occur zero or one times!
```
While we work on improving our build system, it also seems reasonable just to allow `-profile-guided-section-prefix` to be passed more than once, by to `cl::ZeroOrMore`. Quoting [[ http://llvm.org/docs/CommandLine.html#controlling-the-number-of-occurrences-required-and-allowed | the documentation ]]:
> The cl::ZeroOrMore modifier ... indicates that your program will allow the option to be specified zero or more times.
> ...
> If an option is specified multiple times for an option of the cl::opt class, only the last value will be retained.
Reviewers: danielcdh
Reviewed By: danielcdh
Subscribers: twoh, david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D34219
llvm-svn: 305413
For multiprecision arithmetic on MIPS, rather than using ISD::ADDE / ISD::ADDC,
get SelectionDAG to break down the operation into ISD::ADDs and ISD::SETCCs.
For MIPS, only the DSP ASE has a carry flag, so in the general case it is not
useful to directly support ISD::{ADDE, ADDC, SUBE, SUBC} nodes.
Also improve the generation code in such cases for targets with
TargetLoweringBase::ZeroOrOneBooleanContent by directly using the result of the
comparison node rather than using it in selects. Similarly for ISD::SUBE /
ISD::SUBC.
Address optimization breakage by moving the generation of MIPS specific integer
multiply-accumulate nodes to before legalization.
This revolves PR32713 and PR33424.
Thanks to Simonas Kazlauskas and Pirama Arumuga Nainar for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D33494
llvm-svn: 305389
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
Summary:
When legalizing G_LOAD/G_STORE using NarrowScalar, we should avoid emitting
%0 = G_CONSTANT ty 0
%1 = G_GEP %x, %0
since it's cheaper to not emit the redundant instructions than it is to fold them
away later.
Reviewers: qcolombet, t.p.northover, ab, rovka, aditya_nandakumar, kristof.beyls
Reviewed By: qcolombet
Subscribers: javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D32746
llvm-svn: 305340
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: pcc, echristo, aprantl
Reviewed By: aprantl
Subscribers: fhahn, aprantl, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33892
llvm-svn: 305304
This fixes PR33157.
https://bugs.llvm.org//show_bug.cgi?id=33157
We might also think about disallowing duplicate dbg.declare intrinsics
entirely, but this may complicate some passes needlessly.
llvm-svn: 305244
Fix thinko/typo in subreg aware liverange splitting logic. I'm not sure
how to write a proper testcase for this. The original problem only
happens on an out-of-tree target. Forcing subreg enabled targets to
spill and split in a predictable way is near impossible.
llvm-svn: 305228
Summary:
This change enables the sin(x) cos(x) -> sincos(x) optimization on GNU
target triples. This optimization was being inhibited when -ffast-math
wasn't set because sincos in GLibC does not set errno, while sin and cos
do. However, this optimization will only run if the attributes on the
sin/cos calls include readnone, which is how clang represents the fact
that it doesn't care about the errno values set by these functions (via
the -fno-math-errno flag).
Reviewers: hfinkel, bogner
Subscribers: mcrosier, javed.absar, llvm-commits, paul.redmond
Differential Revision: https://reviews.llvm.org/D32921
llvm-svn: 305204
Summary:
The old check for slot overlap treated 2 slots `S` and `T` as
overlapping if there existed a CFG node in which both of the slots could
possibly be active. That is overly conservative and caused stack blowups
in Rust programs. Instead, check whether there is a single CFG node in
which both of the slots are possibly active *together*.
Fixes PR32488.
Patch by Ariel Ben-Yehuda <ariel.byd@gmail.com>
Reviewers: thanm, nagisa, llvm-commits, efriedma, rnk
Reviewed By: thanm
Subscribers: dotdash
Differential Revision: https://reviews.llvm.org/D31583
llvm-svn: 305193
This step is just intended to reduce code duplication rather than change any functionality.
A follow-up would be to replace PPCTargetLowering::spliceIntoChain() usage with this new helper.
Differential Revision: https://reviews.llvm.org/D33649
llvm-svn: 305192
Summary: UADDO has 2 result, and one must check the result no before doing any kind of combine. Without it, the transform is invalid.
Reviewers: joerg
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34088
llvm-svn: 305162
We're currently passing endian-ness around as a param (and not uniformly),
so this eliminates the need for that. I'd like to add a constant fold
call too, and that requires a DL.
llvm-svn: 305129
Summary:
During DAG legalization loop in SelectionDAG::Legalize(),
bookkeeping of the SDNodes that were already legalized is implemented
with SmallPtrSet (LegalizedNodes). This kind of set stores only pointers
to objects, not the objects themselves. Unfortunately, if SDNode is
deleted during legalization for some reason, LegalizedNodes set is not
informed about this fact. This wouldn’t be so bad, if SelectionDAG wouldn’t reuse
space deallocated after deletion of unused nodes, for creation of new
ones. Because of this, new nodes, created during legalization often can
have pointers identical to ones that have been previously legalized,
added to the LegalizedNodes set, and deleted afterwards. This in turn
causes, that newly created nodes, sharing the same pointer as deleted
old ones, are present in LegalizedNodes *already at the moment of
creation*, so we never call Legalize on them.
The fix facilitates the fact, that DAG notifies listeners about each
modification. I have registered DAGNodeDeletedListener inside
SelectionDAG::Legalize, with a callback function that removes any
pointer of any deleted SDNode from the LegalizedNodes set. With this
modification, LegalizeNodes set does not contain pointers to nodes that
were deleted, so newly created nodes can always be inserted to it, even
if they share pointers with old deleted nodes.
Patch by pawel.szczerbuk@intel.com
The issue this patch addresses causes failures in an out-of-tree target,
and i was not able to create a reproducer for an in-tree target, hence
there is no test-case.
Reviewers: delena, spatel, RKSimon, hfinkel, davide, qcolombet
Reviewed By: delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33891
llvm-svn: 305084
By target hookifying getRegisterType, getNumRegisters, getVectorBreakdown,
backends can request that LLVM to scalarize vector types for calls
and returns.
The MIPS vector ABI requires that vector arguments and returns are passed in
integer registers. With SelectionDAG's new hooks, the MIPS backend can now
handle LLVM-IR with vector types in calls and returns. E.g.
'call @foo(<4 x i32> %4)'.
Previously these cases would be scalarized for the MIPS O32/N32/N64 ABI for
calls and returns if vector types were not legal. If vector types were legal,
a single 128bit vector argument would be assigned to a single 32 bit / 64 bit
integer register.
By teaching the MIPS backend to inspect the original types, it can now
implement the MIPS vector ABI which requires a particular method of
scalarizing vectors.
Previously, the MIPS backend relied on clang to scalarize types such as "call
@foo(<4 x float> %a) into "call @foo(i32 inreg %1, i32 inreg %2, i32 inreg %3,
i32 inreg %4)".
This patch enables the MIPS backend to take either form for vector types.
The previous version of this patch had a "conditional move or jump depends on
uninitialized value".
Reviewers: zoran.jovanovic, jaydeep, vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D27845
llvm-svn: 305083
Summary:
Currently XRay compares its threshold against `Function::size()` . However, `Function::size()` returns the number of basic blocks (as I understand, such as cycle bodies, if/else bodies, switch-case bodies, etc.), rather than the number of instructions.
The name of the parameter `-fxray-instruction-threshold=N`, as well as XRay documentation at http://llvm.org/docs/XRay.html , suggests that instructions should be counted, rather than the number of basic blocks.
I see two options:
1. Count the number of MachineInstr`s in MachineFunction : this gives better estimate for the number of assembly instructions on the target. So a user can check in disassembly that the threshold works more or less correctly.
2. Count the number of Instruction`s in a Function : AFAIK, this gives correct number of IR instructions, which the user can check in IR listing. However, this number may be far (several times for small functions) from the number of assembly instructions finally emitted.
Option 1 is implemented in this patch because I think that having the closer estimate for the number of assembly instructions emitted is more important than to have a clear definition of the metric.
Reviewers: dberris, rengolin
Reviewed By: dberris
Subscribers: llvm-commits, iid_iunknown
Differential Revision: https://reviews.llvm.org/D34027
llvm-svn: 305072
This prevents against assertion errors like PR32659 which occur from a
replacement deleting a node after it's been added to the list argument
of RemoveDeadNodes. The specific failure from PR32659 does not
currently happen, but it is still potentially possible. The underlying
cause is that the callers of the change dfunction builds up a list of
nodes to delete after having moved their uses and it possible that a
move of a later node will cause a previously deleted nodes to be
deleted.
Reviewers: bkramer, spatel, davide
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33731
llvm-svn: 305070
This is a preparatory change to expose the debug compression style to
clang. It requires exposing the enumeration and passing the actual
value through to the backend from the frontend in actual value form
rather than a boolean that selects the GNU style of debug info
compression.
Minor tweak to the ELF Object Writer to use a variable for re-used
values. Add an assertion that debug information format is one of the
two currently known types if debug information is being compressed.
llvm-svn: 305038
(0) RegAllocPBQP: Since getRawAllocationOrder() may return a collection that includes reserved physical registers, iterate to find an un-reserved physical register.
(1) VirtRegMap: Enforce the invariant: "no reserved physical registers" in assignVirt2Phys(). Previously, this was checked only after the fact in VirtRegRewriter::rewrite.
(2) MachineVerifier: updated the test per MatzeB's review.
(3) +testcase
Patch by Nick Johnson<Nicholas.Paul.Johnson@deshawresearch.com>!
Differential Revision: https://reviews.llvm.org/D33947
llvm-svn: 305016
The test diff for PowerPC shows we can better optimize if this case is one block.
For x86, there's would be a substantial difference if CGP expansion was enabled because branches are assumed
cheap and SDAG can't optimize across blocks.
Instead of this:
_cmp_eq8:
movq (%rdi), %rax
cmpq (%rsi), %rax
je LBB23_1
## BB#2: ## %res_block
movl $1, %ecx
jmp LBB23_3
LBB23_1:
xorl %ecx, %ecx
LBB23_3: ## %endblock
xorl %eax, %eax
testl %ecx, %ecx
sete %al
retq
We get this:
cmp_eq8:
movq (%rdi), %rcx
xorl %eax, %eax
cmpq (%rsi), %rcx
sete %al
retq
And that matches the optimal codegen that we get from the current expansion in SelectionDAGBuilder::visitMemCmpCall().
If this looks right, then I just need to confirm that vector-sized expansion will work from here, and we can enable
CGP memcmp() expansion for x86. Ie, we'll bypass the power-of-2 special cases currently optimized in SDAG because we
can lower the IR produced here optimally.
Differential Revision: https://reviews.llvm.org/D34005
llvm-svn: 304987
When considering merging stores values are the results of loads only
consider stores whose values come from loads from the same base.
This fixes much of the longer compile times in PR33330.
llvm-svn: 304934
This could be viewed as another shortcoming of the DAGCombiner:
when both operands of a compare are zexted from the same source
type, we should be able to compare the original types.
The effect on PowerPC perf is likely unnoticeable, but there's a
visible regression for x86 if we feed the suboptimal IR for memcmp
expansion to the DAG:
_cmp_eq4_zexted_to_i64:
movl (%rdi), %ecx
movl (%rsi), %edx
xorl %eax, %eax
cmpq %rdx, %rcx
sete %al
_cmp_eq4_better:
movl (%rdi), %ecx
xorl %eax, %eax
cmpl (%rsi), %ecx
sete %al
llvm-svn: 304923
In the special (but also the likely common) case, we can avoid
the multi-block complexity of the general algorithm, so moving
this part off on its own will make it re-usable.
llvm-svn: 304908
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I'd like to enable CGP memcmp expansion for x86, but the output from CGP would regress the
special cases (memcmp(x,y,N) != 0 for N=1,2,4,8,16,32 bytes) that we already handle.
I'm not sure if we'll actually be able to produce the optimal code given the block-at-a-time
limitation in the DAG. We might have to just avoid those special-cases here in CGP. But
regardless of that, I think this is a win for the more general cases.
http://rise4fun.com/Alive/cbQ
Differential Revision: https://reviews.llvm.org/D33963
llvm-svn: 304849
- Add -x <language> option to switch between IR and MIR inputs.
- Change MIR parser to read from stdin when filename is '-'.
- Add a simple mir roundtrip test.
llvm-svn: 304825
CodeGen uses MO_ExternalSymbol to represent the inline assembly strings.
Empty strings for symbol names appear to be invalid. For now just
special case the output code to avoid hitting an `assert()` in
`printLLVMNameWithoutPrefix()`.
This fixes https://llvm.org/PR33317
llvm-svn: 304815
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787