This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
Summary:
The Args class is used in plenty of places besides the command
interpreter (e.g., anything requiring an argc+argv combo, such as when
launching a process), so it needs to be in a lower layer. Now that the
class has no external dependencies, it can be moved down to the Utility
module.
This removes the last (direct) dependency from the Host module to
Interpreter, so I remove the Interpreter module from Host's dependency
list.
Reviewers: zturner, jingham, davide
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D45480
llvm-svn: 330200
LLVM_ON_WIN32 is set exactly with MSVC and MinGW (but not Cygwin) in
HandleLLVMOptions.cmake, which is where _WIN32 defined too. Just use the
default macro instead of a reinvented one.
See thread "Replacing LLVM_ON_WIN32 with just _WIN32" on llvm-dev and cfe-dev.
No intended behavior change.
llvm-svn: 329697
These functions were unused as everyone just went straight for the
direct operations on the register context. In fact, the
Save/RestoreAllRegisters actually appear to be wrong (inverted). Thanks
to Tatyana for pointing this out.
These functions are not very useful now that we can guarantee that each
thread always contains a valid register context, so I just delete them.
llvm-svn: 328770
The difference between this and the previous patch is that now we use
ELF physical addresses only for loading objects into the target (and the
rest of the module load address logic still uses virtual addresses).
Summary:
When writing an object file over gdb-remote, use the vFlashErase, vFlashWrite, and vFlashDone commands if the write address is in a flash memory region. A bare metal target may have this kind of setup.
- Update ObjectFileELF to set load addresses using physical addresses. A typical case may be a data section with a physical address in ROM and a virtual address in RAM, which should be loaded to the ROM address.
- Add support for querying the target's qXfer:memory-map, which contains information about flash memory regions, leveraging MemoryRegionInfo data structures with minor modifications
- Update ProcessGDBRemote to use vFlash commands in DoWriteMemory when the target address is in a flash region
Original discussion at http://lists.llvm.org/pipermail/lldb-dev/2018-January/013093.html
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: llvm-commits, arichardson, emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D42145
Patch by Owen Shaw <llvm@owenpshaw.net>.
llvm-svn: 327970
This is a more principled approach to disabling Spotlight .dSYM
lookups while running the testsuite, most importantly it also works
for the LIT-based tests, which I overlooked in my initial fix
(renaming the test build dir to lldb-tests.noindex).
Differential Revision: https://reviews.llvm.org/D44342
llvm-svn: 327330
This reverts commit r326261 as it introduces inconsistencies in the
handling of load addresses for ObjectFileELF -- some parts of the class
use physical addresses, and some use virtual. This has manifested itself
as us not being able to set the load address of the vdso "module" on
android.
llvm-svn: 326367
Summary:
When writing an object file over gdb-remote, use the vFlashErase, vFlashWrite, and vFlashDone commands if the write address is in a flash memory region. A bare metal target may have this kind of setup.
- Update ObjectFileELF to set load addresses using physical addresses. A typical case may be a data section with a physical address in ROM and a virtual address in RAM, which should be loaded to the ROM address.
- Add support for querying the target's qXfer:memory-map, which contains information about flash memory regions, leveraging MemoryRegionInfo data structures with minor modifications
- Update ProcessGDBRemote to use vFlash commands in DoWriteMemory when the target address is in a flash region
Original discussion at http://lists.llvm.org/pipermail/lldb-dev/2018-January/013093.html
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: arichardson, emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D42145
Patch by Owen Shaw <llvm@owenpshaw.net>
llvm-svn: 326261
Removing the template arguments and most of the mutating methods from
CleanUp makes it easier to understand and reuse.
In its present state, CleanUp would be too cumbersome to adapt to cases
where multiple objects need to be released. Take for example this change
in swift-lldb:
https://github.com/apple/swift-lldb/pull/334/files#diff-6f474df750f75c8ba675f2a8408a5629R219
This change is simple to express with the new CleanUp, but not so simple
with the old version.
Differential Revision: https://reviews.llvm.org/D43662
llvm-svn: 325964
Summary:
The PowerPC64 ABI plugin was modified to:
- properly handle vector type return values
- implement support for struct/class return values
A refactoring in the code that handles return values was also performed, to make it possible to handle structs without repeating (when possible) code that handles its fields.
There was also an issue with CreateInstance(), that only created an instance in the first time it was called and then cached it in a static var. When restarting a process under LLDB's control, the ABI's process weak pointer would become null, and using it would result in a segmentation fault. This issue became more evident after the latest changes to PPC64 plugin, that now uses the process pointer to get the target byte order, making LLDB to seg fault when restarting a program. This was fixed by making CreateInstance() to always create a new ABI instance.
All of LLDB's ReturnValue tests are passing for PPC64le now. It should work for PPC64be too, although this was not tested.
Reviewers: labath, clayborg
Reviewed By: labath
Subscribers: lbianc, anajuliapc, llvm-commits, alexandreyy, nemanjai, kbarton
Differential Revision: https://reviews.llvm.org/D42468
Patch by Leandro Lupori <leandro.lupori@gmail.com>.
llvm-svn: 325324
I have found LLDB cannot find separate debug info of Fedora /usr/bin/gdb.
It is because:
lrwxrwxrwx 1 root root 14 Jan 25 20:41 /usr/bin/gdb -> ../libexec/gdb*
-rwxr-xr-x 1 root root 10180296 Jan 25 20:41 /usr/libexec/gdb*
ls: cannot access '/usr/lib/debug/usr/bin/gdb-8.0.1-35.fc27.x86_64.debug': No such file or directory
-r--r--r-- 1 root root 29200464 Jan 25 20:41 /usr/lib/debug/usr/libexec/gdb-8.0.1-35.fc27.x86_64.debug
FYI that -8.0.1-35.fc27.x86_64.debug may look confusing, it was always just
.debug before.
Why is /usr/bin/gdb a symlink is offtopic for this bugreport, Fedora has it so
for some reasons.
It is always safest to look at the .debug file only after resolving all
symlinks on the binary file.
Differential revision: https://reviews.llvm.org/D42853
llvm-svn: 324224
I have found the lookup by build-id
(when lookup by /usr/lib/debug/path/name/exec.debug failed) does not work as
LLDB tries the build-id hex string in uppercase but Fedora uses lowercase.
xubuntu-16.10 also uses lowercase during my test:
/usr/lib/debug/.build-id/6c/61f3566329f43d03f812ae7057e9e7391b5ff6.debug
Differential revision: https://reviews.llvm.org/D42852
llvm-svn: 324222
Fix the Linux plugin lookup path to include appropriate libdir suffix
for the system. To accomplish this, store the value of
LLVM_LIBDIR_SUFFIX in lldb/Host/Config.h as LLDB_LIBDIR_SUFFIX,
and use this variable when defining the plugin path.
Differential Revision: https://reviews.llvm.org/D42317
llvm-svn: 323673
Summary:
The ObjectFile class was used to determine the architecture of a running
process by inspecting it's main executable. There were two issues with
this:
- it's in the wrong layer
- the call can be very expensive (it can end up computing the crc of the
whole file).
Since the process is running on the host, ideally we would be able to
just query the data straight from the OS like darwin does, but there
doesn't seem to be a reasonable way to do that. So, this fixes the
layering issue by using the llvm object library to inspect the file.
Since we know the process is already running on the host, we just need
to peek at a few bytes of the elf header to determine whether it's 32-
or 64-bit (which should make this faster as well).
Pretty much the same logic was implemented in
NativeProcessProtocol::ResolveProcessArchitecture, so I delete this
logic and replace calls with GetProcessInfo.
Reviewers: eugene, krytarowski
Subscribers: mgorny, hintonda, lldb-commits
Differential Revision: https://reviews.llvm.org/D42488
llvm-svn: 323637
Summary:
These were used by Host::LaunchProcess to "resolve" the executable it
was about to launch. The only parts of Platform::ResolveExecutable, which
seem to be relevant here are the FileSpec::ResolvePath and
ResolveExecutableLocation calls.
The rest (most) of that function deals with selecting an architecture
out of a fat binary and making sure we are able to create a Module with that
slice. These are reasonable actions when selecting a binary to debug,
but not for a generic process launching framework (it's technically even
wrong because we should be able to launch a binary with execute
permissions only, but trying to parse such file will obviously fail).
I remove the platform call by inlining the relevant FileSpec calls and
ignoring the rest of the Platform::ResolveExecutable code. The
architecture found by the slice-searching code is being ignored already
anyway, as we use the one specified in the LaunchInfo, so the only
effect of this should be a different error message in case the
executable does not contain the requested architecture -- before we
would get an error message from the Platform class, but now we will get
an error from the actual posix_spawn syscall (this is only relevant on
mac, as it's the only target supporting fat binaries).
Launching targets for debugging should not be affected as here the
executable is pre-resolved at the point when the Target is created.
Reviewers: jingham, clayborg
Subscribers: lldb-commits, emaste
Differential Revision: https://reviews.llvm.org/D41902
llvm-svn: 322935
The comment seems to indicate that this function would return the "bin"
directory on linux. I've verified that this is not the case, so I'm
updating the comment to match.
llvm-svn: 322472
of a dSYM per-uuid plist that may be present (dsymutil does not
create this plist, it is only added after the fact by additional
tools) -- either the DBGBuildSourcePath + DBGSourcePath pair of
k-v entries which give us the build-time and debug-time remapping,
or the newer DBGSourcePathRemapping dictionary which may give us
multiple remappings.
I'm changing the order that we process these & add them to the
list of source remappings. If the DBGSourcePathRemapping dict
is present, it should be the first entries we will try.
<rdar://problem/36481989>
llvm-svn: 322418
Summary:
There was some confusion in the code about how to represent process
environment. Most of the code (ab)used the Args class for this purpose,
but some of it used a more basic StringList class instead. In either
case, the fact that the underlying abstraction did not provide primitive
operations for the typical environment operations meant that even a
simple operation like checking for an environment variable value was
several lines of code.
This patch adds a separate Environment class, which is essentialy a
llvm::StringMap<std::string> in disguise. To standard StringMap
functionality, it adds a couple of new functions, which are specific to
the environment use case:
- (most important) envp conversion for passing into execve() and likes.
Instead of trying to maintain a constantly up-to-date envp view, it
provides a function which creates a envp view on demand, with the
expectation that this will be called as the very last thing before
handing the value to the system function.
- insert(StringRef KeyEqValue) - splits KeyEqValue into (key, value)
pair and inserts it into the environment map.
- compose(value_type KeyValue) - takes a map entry and converts in back
into "KEY=VALUE" representation.
With this interface most of the environment-manipulating code becomes
one-liners. The only tricky part was maintaining compatibility in
SBLaunchInfo, which expects that the environment entries are accessible
by index and that the returned const char* is backed by the launch info
object (random access into maps is hard and the map stores the entry in
a deconstructed form, so we cannot just return a .c_str() value). To
solve this, I have the SBLaunchInfo convert the environment into the
"envp" form, and use it to answer the environment queries. Extra code is
added to make sure the envp version is always in sync.
(This also improves the layering situation as Args was in the Interpreter module
whereas Environment is in Utility.)
Reviewers: zturner, davide, jingham, clayborg
Subscribers: emaste, lldb-commits, mgorny
Differential Revision: https://reviews.llvm.org/D41359
llvm-svn: 322174
Summary:
For ptys (at least on Linux), the end-of-file (closing of the slave FD)
is signalled by the POLLHUP flag. We were ignoring this flag, which
meant that when this happened, we would spin in a loop, continuously
calling poll(2) and not making any progress.
This makes sure we treat POLLHUP as a read event (reading will return
0), and we call the registered callback when it happens. This is the
behavior our clients expect (and is consistent with how select(2)
works).
Reviewers: eugene, beanz
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D41008
llvm-svn: 320345
1. Move TaskPool into the namespace lldb_private.
2. Add missing std::move in TaskPoolImpl::Worker.
3. std:🧵:hardware_concurrency may return 0,
handle this case correctly.
Differential revision: https://reviews.llvm.org/D40587
Test plan: make check-all
llvm-svn: 319492
The rationale here is that ArchSpec is used throughout the codebase,
including in places which should not depend on the rest of the code in
the Core module.
This commit touches many files, but most of it is just renaming of
#include lines. In a couple of cases, I removed the #include ArchSpec
line altogether, as the file was not using it. In one or two places,
this necessitated adding other #includes like lldb-private-defines.h.
llvm-svn: 318048
Summary:
In D39387, I was quick to jump to conclusion that ArchSpec has no
external dependencies. It turns there still was one call to
HostInfo::GetArchitecture left -- for implementing the "systemArch32"
architecture and friends.
Since GetAugmentedArchSpec is the place we handle these "incomplete"
triples that don't specify os or vendor and "systemArch" looks very much
like an incomplete triple, I move its handling there.
After this ArchSpec *really* does not have external dependencies, and
I'll move it to the Utility module as a follow-up.
Reviewers: zturner, clayborg, jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D39896
llvm-svn: 318046
Summary:
This commit removes the concrete_frame_idx member from
NativeRegisterContext and related functions, which was always set to
zero and never used.
I also change the native thread class to store a NativeRegisterContext
as a unique_ptr (documenting the ownership) and make sure it is always
initialized (most of the code was already blindly dereferencing the
register context pointer, assuming it would always be present -- this
makes its treatment consistent).
Reviewers: eugene, clayborg, krytarowski
Subscribers: aemerson, sdardis, nemanjai, javed.absar, arichardson, kristof.beyls, kbarton, uweigand, alexandreyy, lldb-commits
Differential Revision: https://reviews.llvm.org/D39837
llvm-svn: 317881
Summary:
These functions used to return bool to signify whether they were able to
retrieve the data. This is redundant because the ArchSpec and ByteOrder
already have their own "invalid" states, *and* because both of the
current implementations (linux, netbsd) can always provide a valid
result.
This allows us to simplify bits of the code handling these values.
Reviewers: eugene, krytarowski
Subscribers: javed.absar, lldb-commits
Differential Revision: https://reviews.llvm.org/D39733
llvm-svn: 317779
SetOututFileHandle to work with IOBase.
I did make one change after checking with Larry --
I renamed SBDebugger::Flush to FlushDebuggerOutputHandles
and added a short docstring to the .i file to make it
a little clearer under which context programs may need
to use this API.
Differential Revision: https://reviews.llvm.org/D39128
<rdar://problem/34870417>
llvm-svn: 317182
SetOututFileHandle to work with IOBase.
I did make one change after checking with Larry --
I renamed SBDebugger::Flush to FlushDebuggerOutputHandles
and added a short docstring to the .i file to make it
a little clearer under which context programs may need
to use this API.
Differential Revision: https://reviews.llvm.org/D38829
llvm-svn: 317180
Summary:
ArchSpec::SetTriple was taking a Platform as an argument, and used it to
fill in missing pieces of the specified triple. I invert the dependency
by moving this code to other classes. For this purpose, I've created
three new functions.
- HostInfo::GetAugmentedArchSpec: fills in the triple using the host
platform (this used to be implemented by passing a null platform
pointer). By putting this code in the Host module, we can provide a
way to anyone who does not have a platform instance (lldb-server) an
easy way to get Host data.
- Platform::GetAugmentedArchSpec: if you have a platform instance, you
can call this to let it fill in the triple.
- static Platform::GetAugmentedArchSpec: implements the "if platform ==
0 then use_host() else use_platform()" part.
Reviewers: zturner, jingham, clayborg
Subscribers: mgorny, javed.absar, lldb-commits
Differential Revision: https://reviews.llvm.org/D39387
llvm-svn: 316987
Versions of android before kitkat implemented pselect non-atomically,
which caused flakyness, as we were relying on it atomically setting the
signal mask to implement waiting for signals.
This patch implements a direct call to the the pselect kernel syscall,
which does not suffer from this problem. The code itself is not very
pretty, but fortunately the uglyness is contained in the
android version of the MainLoop::RunImpl::Poll function.
llvm-svn: 316915
Summary:
We had a bug where if we had forked (in the ProcessLauncherPosixFork)
while another thread was writing a log message, we would deadlock. This
happened because the fork child inherited the locked log rwmutex, which
would never get unlocked. This meant the child got stuck trying to
disable all log channels.
The bug existed for a while but only started being apparent after
D37930, which started using ThreadLauncher (which uses logging) instead
of std::thread (which does not) for launching TaskPool threads.
The fix is to use pthread_atfork to disable logging in the forked child.
Reviewers: zturner, eugene, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D38938
llvm-svn: 316368
Summary:
The NativeThread class is useless without the containing process (and in
some places it is already assuming the process is always around). This
makes it clear that the NativeProcessProtocol is the object owning the
threads, and makes the destruction order deterministic (first threads,
then process). The NativeProcess is the only thing holding a thread
unique_ptr, and methods that used to hand out thread shared pointers now
return raw pointers or references.
Reviewers: krytarowski, eugene
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D35618
llvm-svn: 316007
This patch adds support for passing an arbitrary python stream
(anything inheriting from IOBase) to SetOutputFileHandle or
SetErrorFileHandle.
Differential revision: https://reviews.llvm.org/D38829
<rdar://problem/34870417>
llvm-svn: 315966
Previously LLDB required the DWP file
to be located next to the executable file.
This diff uses the helper function
Symbols::LocateExecutableSymbolFile to search for
DWP files in the standard locations for debug symbols.
Test plan:
Build a toy test example:
main.cpp
clang -gsplit-dwarf -g -O0 main.cpp -o main.exe
llvm-dwp -e main.exe -o main.exe.dwp
mkdir -p debug_symbols
mv main.exe.dwp debug_symbols/main.exe.dwp
Run lldb:
lldb
settings set target.debug-file-search-paths ./debug_symbols
file ./main.exe
br set --name f
run
Check that debugging works:
setting breakpoints, printing local variables.
Differential revision: https://reviews.llvm.org/D38568
llvm-svn: 315387
Summary:
This allows for the stack size to be configured, which isn't
possible with std::thread. Prevents overflowing the stack when
performing complex operations in the task pool on darwin,
where the default pthread stack size is only 512kb.
This also moves TaskPool from Utility to Host.
Reviewers: labath, tberghammer, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D37930
llvm-svn: 313637