The hook has the following form:
* `bool isInvalidated(const AnalysisManager::PreservedAnalyses &)`
Given a preserved analysis set, the analysis returns true if it should truly be
invalidated. This allows for more fine-tuned invalidation in cases where an
analysis wasn't explicitly marked preserved, but may be preserved(or
invalidated) based upon other properties; such as analyses sets.
PiperOrigin-RevId: 283582889
BitEnumAttr is a mechanism for modelling attributes whose value is
a bitfield. It should not be scoped to the SPIR-V dialect and can
be used by other dialects too.
This CL is mostly shuffling code around and adding tests and docs.
Functionality changes are:
* Fixed to use `getZExtValue()` instead of `getSExtValue()` when
getting the value from the underlying IntegerAttr for a case.
* Changed to auto-detect whether there is a case whose value is
all bits unset (i.e., zero). If so handle it specially in all
helper methods.
PiperOrigin-RevId: 277964926
The generated build methods have result type before the arguments (operands and attributes, which are also now adjacent in the explicit create method). This also results in changing the create method's ordering to match most build method's ordering.
PiperOrigin-RevId: 271755054
Sdd support in deserializer for OpMemberName instruction. For now
the name is just processed and not associated with the
spirv::StructType being built. That needs an enhancement to
spirv::StructTypes itself.
Add tests to check for errors reported during deserialization with
some refactoring to common out some utility functions.
PiperOrigin-RevId: 270794524
This fixes a problem with current save-restore pattern of diagnostics handlers, as there may be a thread race between when the previous handler is destroyed. For example, this occurs when using multiple ParallelDiagnosticHandlers asynchronously:
Handler A
Handler B | - LifeTime - | Restore A here.
Handler C | --- LifeTime ---| Restore B after it has been destroyed.
The new design allows for multiple handlers to be registered in a stack like fashion. Handlers can return success() to signal that they have fully processed a diagnostic, or failure to propagate otherwise.
PiperOrigin-RevId: 270720625
Introduce support for applying the stripe operator to sum expressions, as in
(x + A) # B = x + A - (x + A) mod B.
This is required to represent a combination of tiling and padding in the SDBM
framework, and is a valid SDBM construct that was not originally supported.
PiperOrigin-RevId: 269758807
Extend SDBM simplification patterns to support more cases where the addition of
two expressions each involving one or two variables would result in a sum
expression that only contains one variable and thus remains in the SDBM domain.
This is made possible by the new canonical structure of SDBM where the constant
term appears once. This simplification will be necessary to support
round-tripping of stripe expressions containing constant terms on the LHS
through affine expressions.
PiperOrigin-RevId: 269757732
Swap the allowed nesting of sum and diff expressions: now a diff expression can
contain a sum expression, but only on the left hand side. A difference of two
expressions sum must be canonicalized by grouping their constant terms in a
single expression. This change of sturcture became possible thanks to the
introduction of the "direct" super-kind. It is necessary to enable support of
sum expressions on the left hand side of the stripe expression.
SDBM expressions are now grouped into the following structure
- expression
- varying
- direct
- sum <- (term, constant)
- term
- symbol
- dimension
- stripe <- (term, constant)
- negation <- (direct)
- difference <- (direct, term)
- constant
The notation <- (...) denotes the types of subexpressions a compound
expression can combine.
PiperOrigin-RevId: 269337222
Direct expressions are those that do not negate any of the variables they
involve. They include input expressions (dimensions and symbols), stripe and
sum expressions, and combinations of those. Reifying direct expressions as a
class is a precondition for enabling additions on the LHS of a stripe
expression.
PiperOrigin-RevId: 269336031
This better reflects how this kind of expressions is used and avoids the
potential confusion since the expression can take negative values. Term
expressions comprise dimensions, symbols and stripe expressions. In an SDBM
domain, a stripe expression always corresponds to a variable, input or
temporary. This expression can appear anywhere an input variable can,
including on the LHS of other stripe expressions.
PiperOrigin-RevId: 268486066
Similar to enum, added a generator for structured data. This provide Dictionary that stores a fixed set of values and guarantees the values are valid. It is intended to store a fixed number of values by a given name.
PiperOrigin-RevId: 266437460
The pass manager is moving towards being able to run on operations at arbitrary nesting. An operation may have both parent and child operations, and the AnalysisManager must be able to handle this generalization. The AnalysisManager class now contains generic 'getCachedParentAnalysis' and 'getChildAnalysis/getCachedChildAnalysis' functions to query analyses on parent/child operations. This removes the hard coded nesting relationship between Module/Function.
PiperOrigin-RevId: 266003636
Each basic block in SPIR-V must start with an OpLabel instruction.
We don't support control flow yet, so this CL just makes sure that
the entry block follows this rule and is valid.
PiperOrigin-RevId: 265718841
Use of std::isupper and std::islower need <cctype> header file. Fix
that and also fix the header of a file to match the file name.
PiperOrigin-RevId: 260816852
All non-argument attributes specified for an operation are treated as
decorations on the result value and (de)serialized using OpDecorate
instruction. An error is generated if an attribute is not an argument,
and the name doesn't correspond to a Decoration enum. Name of the
attributes that represent decoerations are to be the snake-case-ified
version of the Decoration name.
Add utility methods to convert to snake-case and camel-case.
PiperOrigin-RevId: 260792638
We are relying on serializer to construct positive cases to drive
the test for deserializer. This leaves negative cases untested.
This CL adds a basic test fixture for covering the negative
corner cases to enforce a more robust deserializer.
Refactored common SPIR-V building methods out of serializer to
share it with the deserialization test.
PiperOrigin-RevId: 260742733
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.
PiperOrigin-RevId: 256196193
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).
PiperOrigin-RevId: 255983022
In ODS, right now we use StringAttrs to emulate enum attributes. It is
suboptimal if the op actually can and wants to store the enum as a
single integer value; we are paying extra cost on storing and comparing
the attribute value.
This CL introduces a new enum attribute subclass that are backed by
IntegerAttr. The downside with IntegerAttr-backed enum attributes is
that the assembly form now uses integer values, which is less obvious
than the StringAttr-backed ones. However, that can be remedied by
defining custom assembly form with the help of the conversion utility
functions generated via EnumsGen.
Choices are given to the dialect writers to decide which one to use for
their enum attributes.
PiperOrigin-RevId: 255935542
Some compilers find initializer list constructors from boolean literals
ambiguous between ArrayRef<bool> and ArrayRef<Attribute>. Call the
ArrayRef<bool> constructor explicitly to disambiguate.
PiperOrigin-RevId: 253224859
Enum attributes can be defined using `EnumAttr`, which requires all its cases
to be defined with `EnumAttrCase`. To facilitate the interaction between
`EnumAttr`s and their C++ consumers, add a new EnumsGen TableGen backend
to generate a few common utilities, including an enum class, `llvm::DenseMapInfo`
for the enum class, conversion functions from/to strings.
This is controlled via the `-gen-enum-decls` and `-gen-enum-defs` command-line
options of `mlir-tblgen`.
PiperOrigin-RevId: 252209623
Otherwise, GCC < 7 does not link in the dialect registration, fails to look up
the dialect in the context and cannot construct SDBM objects.
--
PiperOrigin-RevId: 249259758
MLIRContext does not have to be aware of the SDBM unique data structures
directly. Move the SDBM storage uniquer from MLIRContext to the SDBM dialect
instance. Expressions that previously required a context to be constructed now
require an instance of the dialect in order to access the uniquer. While they
could look up the dialect in the context, it would have introduced a rather
expensive lookup into each construction. Instead, the caller is expected to
obtain the dialect instance and cache it.
--
PiperOrigin-RevId: 249245199
We now have sufficient extensibility in dialects to move attribute components
such as SDBM out of the core IR into a dedicated dialect and make them
optional. Introduce an SDBM dialect and move the code. This is a mostly
non-functional change.
--
PiperOrigin-RevId: 249244802
A couple of warnings was produced when compiling this test due to comaprisons
with a signed literal. Used unsigned literals instead.
--
PiperOrigin-RevId: 249242970
Affine expressions are designed as components of an attribute and are unique'd
in the MLIRContext. When affine expressions were implemented, uniqu'ing
objects in a context required to modify MLIRContext implementation. This is no
longer the case as generic StorageUniquer has been introduced. Port the
AffineExpr construction to use the new infrastructure by introducing an
affineUniquer into the MLIRContext.
--
PiperOrigin-RevId: 249207539
SDBM has an output format representing the unterlying matrix and stripe
expressions. Move the SDBM tests from unit testing framework to
FileCheck-based tests, printing them to the standard output and using FileCheck
to test the output. Tests that check the API proper (e.g. that SDBM
expressions have a specific subtype) and that rely on non-syntatic properties
(equality of the set of constraints) are not ported.
--
PiperOrigin-RevId: 249006055
Provide an "unsafe" version of the overloaded arithmetic operators for SDBM
expressions. These operators expect the operands to be of the right SDBM
expression subtype and assert if they are not. They also perform simple
folding operations as well as some semantically correct operations that
construct an SDBM expression of a different subtype, e.g., a difference
expression if the RHS of an operator+ is a negated variable. These operators
are scoped in a namespace to allow for a future "safe" version of the operators
that propagates null expressions to denote the error state when expressions
have wrong subtypes.
--
PiperOrigin-RevId: 248704153