This patch is enough to have shared objects recognized by LLDB. We can handle
position independent executables. We can handle dynamically loaded modules
brought in via dlopen.
The DYLDRendezvous class provides an interface to a structure present in the
address space of ELF-based processes. This structure provides the address of a
function which is called by the linker each time a shared object is loaded and
unloaded (thus a breakpoint at that address will let LLDB intercept such
events), a list of entries describing the currently loaded shared objects, plus
a few other things.
On Linux, processes are brought up with an auxiliary vector on the stack. One
element in this vector contains the (possibly dynamic) entry address of the
process. One does not need to walk the stack to find this information as it is
also available under /proc/<pid>/auxv. The new AuxVector class provides a
convenient read-only view of this auxiliary vector information. We use the
dynamic entry address and the address as specified in the object file to compute
the actual load address of the inferior image. This strategy works for both
normal executables and PIE's.
llvm-svn: 123592
This fixes the original testcase in PR8927. It also causes a clang
binary built with a patched clang to increase in size by 0.21%.
We can probably get some of the size back by writing a pass that
detects that a global never has its pointer compared and adds
unnamed_addr to it (maybe extend global opt). It is also possible that
there are some other cases clang could add unnamed_addr to.
I will investigate extending globalopt next.
llvm-svn: 123584
non-variadic function template over a variadic one. This matches GCC
and the intent of the C++0x wording, in a way that I think is likely
to be acceptable to the committee.
llvm-svn: 123581
into and/shift would cause nodes to move around and a dangling pointer
to happen. The code tried to avoid this with a HandleSDNode, but
got the details wrong.
llvm-svn: 123578
and the filename has multiple .'s in it, use the last. For example, "foo.bar.cpp"
should produce "foo.bar.d" not "foo.d". Patch by Johan Boule in PR8391
llvm-svn: 123576
then don't try to decimate it into its individual pieces. This will just make a mess of the
IR and is pointless if none of the elements are individually accessed. This was generating
really terrible code for std::bitset (PR8980) because it happens to be lowered by clang
as an {[8 x i8]} structure instead of {i64}.
The testcase now is optimized to:
define i64 @test2(i64 %X) {
br label %L2
L2: ; preds = %0
ret i64 %X
}
before we generated:
define i64 @test2(i64 %X) {
%sroa.store.elt = lshr i64 %X, 56
%1 = trunc i64 %sroa.store.elt to i8
%sroa.store.elt8 = lshr i64 %X, 48
%2 = trunc i64 %sroa.store.elt8 to i8
%sroa.store.elt9 = lshr i64 %X, 40
%3 = trunc i64 %sroa.store.elt9 to i8
%sroa.store.elt10 = lshr i64 %X, 32
%4 = trunc i64 %sroa.store.elt10 to i8
%sroa.store.elt11 = lshr i64 %X, 24
%5 = trunc i64 %sroa.store.elt11 to i8
%sroa.store.elt12 = lshr i64 %X, 16
%6 = trunc i64 %sroa.store.elt12 to i8
%sroa.store.elt13 = lshr i64 %X, 8
%7 = trunc i64 %sroa.store.elt13 to i8
%8 = trunc i64 %X to i8
br label %L2
L2: ; preds = %0
%9 = zext i8 %1 to i64
%10 = shl i64 %9, 56
%11 = zext i8 %2 to i64
%12 = shl i64 %11, 48
%13 = or i64 %12, %10
%14 = zext i8 %3 to i64
%15 = shl i64 %14, 40
%16 = or i64 %15, %13
%17 = zext i8 %4 to i64
%18 = shl i64 %17, 32
%19 = or i64 %18, %16
%20 = zext i8 %5 to i64
%21 = shl i64 %20, 24
%22 = or i64 %21, %19
%23 = zext i8 %6 to i64
%24 = shl i64 %23, 16
%25 = or i64 %24, %22
%26 = zext i8 %7 to i64
%27 = shl i64 %26, 8
%28 = or i64 %27, %25
%29 = zext i8 %8 to i64
%30 = or i64 %29, %28
ret i64 %30
}
In this case, instcombine was able to eliminate the nonsense, but in PR8980 enough
PHIs are in play that instcombine backs off. It's better to not generate this stuff
in the first place.
llvm-svn: 123571
multiple uses. In some cases, all the uses are the same operation,
so instcombine can go ahead and promote the phi. In the testcase
this pushes an add out of the loop.
llvm-svn: 123568
http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
In a silly microbenchmark on a 65 nm core2 this is 1.5x faster than the old
code in 32 bit mode and about 2x faster in 64 bit mode. It's also a lot shorter,
especially when counting 64 bit population on a 32 bit target.
I hope this is fast enough to replace Kernighan-style counting loops even when
the input is rather sparse.
llvm-svn: 123547