We currently only support combining target shuffles that consist of a single source input (plus elements known to be undef/zero).
This patch generalizes the recursive combining of the target shuffle to collect all the inputs, merging any duplicates along the way, into a full set of src ops and its shuffle mask.
We uncover a number of cases where we have failed to combine a unary shuffle because the input has been duplicated and separated during lowering.
This will allow us to combine to 2-input shuffles in a future patch.
Differential Revision: https://reviews.llvm.org/D22859
llvm-svn: 277631
As discussed on PR28136, lowerShuffleAsRepeatedMaskAndLanePermute was attempting to match repeated masks at the 128-bit level and then permute the resultant lanes at the 128-bit (AVX1) or 64-bit (AVX2) sub-lane level.
This change allows us to create the repeated masks at the sub-lane level (and then concat them together to create a 128-bit repeated mask) and then select which sub-lane to permute. This has no effect on the AVX1 codegen.
Fixes PR28136.
llvm-svn: 275543
This improves the situation discussed in D19228 where we were forcing VPERMPD/VPERMQ where VPERM2F128/VPERM2I128 would have been better.
This was incorrectly reverted in rL275421 during triage of PR28552.
llvm-svn: 275497
This improves the situation discussed in D19228 where we were forcing VPERMPD/VPERMQ where VPERM2F128/VPERM2I128 would have been better.
llvm-svn: 275411
Using VPERMQ/VPERMPD allows memory folding of the (repeated) input where VINSERTI128/VINSERTF128 can not.
Differential Revision: http://reviews.llvm.org/D19228
llvm-svn: 266728
AVX1 doesn't support the shuffling of 256-bit integer vectors. For 32/64-bit elements we get around this by shuffling as float/double but for 8/16-bit elements (assuming they can't widen) we currently just split, shuffle as 128-bit vectors and concatenate the results back.
This patch adds the ability to lower using the bit-blend patterns before defaulting to the splitting behaviour.
Part 2 of 2
Differential Revision: http://reviews.llvm.org/D17292
llvm-svn: 261082
AVX1 doesn't support the shuffling of 256-bit integer vectors. For 32/64-bit elements we get around this by shuffling as float/double but for 8/16-bit elements (assuming they can't widen) we currently just split, shuffle as 128-bit vectors and concatenate the results back.
This patch adds the ability to lower using the bit-mask patterns before defaulting to the splitting behaviour. In some cases this ends up matching what AVX2 would do anyhow or what AVX1 does on the split vectors.
Part 1 of 2
Differential Revision: http://reviews.llvm.org/D17292
llvm-svn: 261081
This patch attempts to represent a shuffle as a repeating shuffle (recognisable by is128BitLaneRepeatedShuffleMask) with the source input(s) in their original lanes, followed by a single permutation of the 128-bit lanes to their final destinations.
On AVX2 we can additionally attempt to match using 64-bit sub-lane permutation. AVX2 can also now match a similar 'broadcasted' repeating shuffle.
This patch has several benefits:
* Avoids prematurely matching with lowerVectorShuffleByMerging128BitLanes which can require both inputs to have their input lanes permuted before shuffling.
* Can replace PERMPS/PERMD instructions - although these are useful for cross-lane unary shuffling, they require their shuffle mask to be pre-loaded (and increase register pressure).
* Matching the repeating shuffle makes use of a lot of existing shuffle lowering.
There is an outstanding minor AVX1 regression (combine_unneeded_subvector1 in vector-shuffle-combining.ll) of a previously 128-bit shuffle + subvector splat being converted to a subvector splat + (2 instruction) 256-bit shuffle, I intend to fix this in a followup patch for review.
Differential Revision: http://reviews.llvm.org/D16537
llvm-svn: 260834
Better handling of the annoying pshuflw/pshufhw ops which only shuffle lower/upper halves of a vector.
Added vXi16 unary shuffle support for cases where i16 elements (from the same half of the source) are being splatted to the whole of one of the halves. This avoids the general lowering case which must shuffle the 32-bit elements first - meaning that we used to end up with unnecessary duplicate pshuflw/pshufhw shuffles.
Note this has the side effect of a lot of SSSE3 test cases no longer needing to use PSHUFB, as it falls below the 3 op combine threshold for when PSHUFB is typically worth it. I've raised PR26183 to discuss if the threshold should be changed and whether we need to make it more specific to the target CPU.
Differential Revision: http://reviews.llvm.org/D14901
llvm-svn: 258440
AVX2 can only broadcast from the zero'th element of a vector, but if the broadcastable element is the zero'th element of a 128-bit subvector its advantageous to extract the subvector, broadcast from that and avoid the loading of shuffle mask data that would be needed for VPERMPS/VPERMD. The only exception being when the source type is 4f64 or 4i64 which can directly use the immediate shuffle VPERMPD/VPERMQ directly.
Differential Revision: http://reviews.llvm.org/D16050
llvm-svn: 258081
First step towards making better use of AVX's implicit zeroing of the upper half of a 256-bit vector by instructions that only act on the lower 128-bit vector - discussed on D14151.
As well as the fact that 128-bit shuffle instructions are generally more capable, this can be performant for older CPUs with 128-bit ALUs (e.g. Jaguar, Sandy Bridge) that must treat 256-bit vectors as multiple micro-ops.
Moved the similar subvector extraction shuffle combines from PerformShuffleCombine256 to lowerVectorShuffle as well.
Note: I've avoided combining shuffles that reference elements from the upper halves of the input vectors - this may be reviewed in future work as well (AVX1 would probably always gain, but AVX2 does have some cross-lane shuffle instructions).
Differential Revision: http://reviews.llvm.org/D15477
llvm-svn: 256332
autogenerated.
Also update existing test cases which appear to be generated by it and
weren't modified (other than addition of the header) by rerunning it.
llvm-svn: 253917
Now that we recognize this, we can support it instead of bailing out.
That is, we can fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc (srl Y, 16)))))
llvm-svn: 252362
We used to incorrectly assume that the offset we're extracting from
was a multiple of the element size. So, we'd fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc Y))))
whereas we should have extracted the higher bits from X.
Instead, bail out if the assumption doesn't hold.
llvm-svn: 252361
This patch generalizes the lowering of shuffles as zero extensions to allow extensions that don't start from the first element. It now recognises extensions starting anywhere in the lower 128-bits or at the start of any higher 128-bit lane.
The motivation was to reduce the number of high cost pshufb calls, but it also improves the SSE2 case as well.
Differential Revision: http://reviews.llvm.org/D12561
llvm-svn: 248250
Fixes PR23464: one way to use the broadcast intrinsics is:
_mm256_broadcastw_epi16(_mm_cvtsi32_si128(*(int*)src));
We don't currently fold this, but now that we use native IR for
the intrinsics (r245605), we can look through one bitcast to find
the broadcast scalar.
Differential Revision: http://reviews.llvm.org/D10557
llvm-svn: 245613
VPAND is a lot faster than VPSHUFB and VPBLENDVB - this patch ensures we attempt to lower to a basic bitmask before lowering to the slower byte shuffle/blend instructions.
Split off from D11518.
Differential Revision: http://reviews.llvm.org/D11541
llvm-svn: 243395
Without this patch, we split the 256-bit vector into halves and produced something like:
movzwl (%rdi), %eax
vmovd %eax, %xmm0
vxorps %xmm1, %xmm1, %xmm1
vblendps $15, %ymm0, %ymm1, %ymm0 ## ymm0 = ymm0[0,1,2,3],ymm1[4,5,6,7]
Now, we eliminate the xor and blend because those zeros are free with the vmovd:
movzwl (%rdi), %eax
vmovd %eax, %xmm0
This should be the final fix needed to resolve PR22685:
https://llvm.org/bugs/show_bug.cgi?id=22685
llvm-svn: 233941
Another case of x86-specific shuffle strength reduction:
avoid generating insert*128 instructions with index 0 because
they are slower than their non-lane-changing blend equivalents.
Shuffle lowering already catches most of these cases, but
the zero vector case and some other paths such as in the
modified test in vector-shuffle-256-v32.ll were getting
through.
Differential Revision: http://reviews.llvm.org/D8366
llvm-svn: 232773
vectors. This lets us fix the rest of the v16 lowering problems when
pshufb is clearly better.
We might still be able to improve some of the lowerings by enabling the
other combine-based rewriting to fire for non-128-bit vectors, but this
at least should remove any regressions from using the fancy v16i16
lowering strategy.
llvm-svn: 230753
repeated 128-bit lane shuffles of wider vector types and use it to lower
256-bit v16i16 vector shuffles where applicable.
This should let us perfectly lowering the pattern of pshuflw and pshufhw
even for AVX2 256-bit patterns.
I've not added AVX-512 support, but it should be trivial for someone
working on that to wire up.
Note that currently this generates bad, long shuffle chains because we
don't combine 256-bit target shuffles. The subsequent patches will fix
that.
llvm-svn: 230751
is going well, remove the flag and the code for the old legality tests.
This is the first step toward removing the entire old vector shuffle
lowering. *Much* more code to delete coming up next.
llvm-svn: 229963
addition to lowering to trees rooted in an unpack.
This saves shuffles and or registers in many various ways, lets us
handle another class of v4i32 shuffles pre SSE4.1 without domain
crosses, etc.
llvm-svn: 229856
v16i8 shuffles, and replace it with new facilities.
This uses precise patterns to match exact unpacks, and the new
generalized unpack lowering only when we detect a case where we will
have to shuffle both inputs anyways and they terminate in exactly
a blend.
This fixes all of the blend horrors that I uncovered by always lowering
blends through the vector shuffle lowering. It also removes *sooooo*
much of the crazy instruction sequences required for v16i8 lowering
previously. Much cleaner now.
The only "meh" aspect is that we sometimes use pshufb+pshufb+unpck when
it would be marginally nicer to use pshufb+pshufb+por. However, the
difference there is *tiny*. In many cases its a win because we re-use
the pshufb mask. In others, we get to avoid the pshufb entirely. I've
left a FIXME, but I'm dubious we can really do better than this. I'm
actually pretty happy with this lowering now.
For SSE2 this exposes some horrors that were really already there. Those
will have to fixed by changing a different path through the v16i8
lowering.
llvm-svn: 229846
This blend instruction is ... really lame. The register usage is insane.
As a consequence this is probably only *barely* better than 2 pshufbs
followed by a por, and that mostly because it only has to read from
a single memory location.
However, this doesn't fix as much as I kind of expected, so more to go.
Pretty sure that the ordering and delegation of v16i8 is just really,
really bad.
llvm-svn: 229373
This patch refactors the existing lowerVectorShuffleAsByteShift function to add support for 256-bit vectors on AVX2 targets.
It also fixes a tablegen issue that prevented the lowering of vpslldq/vpsrldq vec256 instructions.
Differential Revision: http://reviews.llvm.org/D7596
llvm-svn: 229311
when that will allow it to lower with a single permute instead of
multiple permutes.
It tries to detect when it will only have to do a single permute in
either case to maximize folding of loads and such.
This cuts a *lot* of the avx2 shuffle permute counts in half. =]
llvm-svn: 229309
directly into blends of the splats.
These patterns show up even very late in the vector shuffle lowering
where we don't have any chance for DAG combining to kick in, and
blending is a tremendously simpler operation to model. By coercing the
shuffle into a blend we can much more easily match and lower shuffles of
splats.
Immediately with this change there are significantly more blends being
matched in the x86 vector shuffle lowering.
llvm-svn: 229308
I was somewhat surprised this pattern really came up, but it does. It
seems better to just directly handle it than try to special case every
place where we end up forming a shuffle that devolves to a shuffle of
a zero vector.
llvm-svn: 229301
subvectors from buildvectors. That doesn't really make any sense and it
breaks all of the down-stream matching of buildvectors to cleverly lower
shuffles.
With this, we now get the shift-based lowering of 256-bit vector
shuffles with AVX1 when we split them into 128-bit vectors. We also do
much better on the zero-extension patterns, although there remains quite
a bit of room for improvement here.
llvm-svn: 229299
legality test (essentially, everything is legal).
I'm planning to make this the default shortly, but I'd like to fix
a collection of the bugs it exposes first, and this will let me easily
test them. It also showcases both the improvements and a few of the
regressions triggered by the change. The biggest improvements by far are
the significantly reduced shuffling and domain crossing in the combining
test case. The biggest regressions are missing some clever blending
patterns.
llvm-svn: 229284
version of the script.
Changes include:
- Using the VEX prefix
- Skipping more detail when we have useful shuffle comments to match
- Matching more shuffle comments that have been added to the printer
(yay!)
- Matching the destination registers of some AVX instructions
- Stripping trailing whitespace that crept in
- Fixing indentation issues
Nothing interesting going on here. I'm just trying really hard to ensure
these changes don't show up in the diffs with actual changes to the
backend.
llvm-svn: 228132
Patch to match cases where shuffle masks can be reduced to bit shifts. Similar to byte shift shuffle matching from D5699.
Differential Revision: http://reviews.llvm.org/D6649
llvm-svn: 228047
has a remarkably unique and efficient lowering.
While we get this some of the time already, we miss a few cases and
there wasn't a principled reason we got it. We should at least test
this. v8 already has tests for this pattern.
llvm-svn: 222607
shuffle lowering to allow much better blend matching.
Specifically, with the new structure the code seems clearer to me and we
correctly can hit the cases where merging two 128-bit lanes is a clear
win and can be shuffled cheaply afterward.
llvm-svn: 222539
lanes.
By special casing these we can often either reduce the total number of
shuffles significantly or reduce the number of (high latency on Haswell)
AVX2 shuffles that potentially cross 128-bit lanes. Even when these
don't actually cross lanes, they have much higher latency to support
that. Doing two of them and a blend is worse than doing a single insert
across the 128-bit lanes to blend and then doing a single interleaved
shuffle.
While this seems like a narrow case, it kept cropping up on me and the
difference is *huge* as you can see in many of the test cases. I first
hit this trying to perfectly fix the interleaving shuffle patterns used
by Halide for AVX2.
llvm-svn: 222533
merging 128-bit subvectors and also shuffling all the elements of those
subvectors. Currently we generate pretty bad code for many of these, but
I'm testing a patch that should dramatically improve this in addition to
making the shuffle lowering robust to other changes.
llvm-svn: 222525