If the return values can't be lowered to registers
SelectionDAG performs the sret demotion. This patch
contains the basic implementation for the same in
the GlobalISel pipeline.
Furthermore, targets should bring relevant changes
during lowerFormalArguments, lowerReturn and
lowerCall to make use of this feature.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92953
Recently a few patches are made to move towards using select i1 instead of and/or i1 to represent "a && b"/"a || b" in C/C++.
"a && b" in C/C++ does not evaluate b if a is false whereas 'and a, b' in IR evaluates b and uses its result regardless of the result of a.
This is problematic because it can cause miscompilation if b was an erroneous operation (https://llvm.org/pr48353).
In C/C++, the result is simply false because b is not evaluated, but in IR the result is poison.
The discussion at D93065 has more context about this.
This patch makes two branch-splitting optimizations (one in SelectionDAGBuilder, one in CodeGenPrepare) recognize
select form of and/or as well using m_LogicalAnd/Or.
Since it is CodeGen, I think this is semantically ok (at least as safe as what codegen already did).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93853
Returning int64_t was arbitrarily limiting for wide integer types, and
the functions should handle the full generality of the IR.
Also changes the full form which returns the originally defined
vreg. Add another wrapper for the common case of just immediately
converting to int64_t (arguably this would be useful for the full
return value case as well).
One possible issue with this change is some of the existing uses did
break without conversion to getConstantVRegSExtVal, and it's possible
some without adequate test coverage are now broken.
This migrates all LLVM (except Kaleidoscope and
CodeGen/StackProtector.cpp) DebugLoc::get to DILocation::get.
The CodeGen/StackProtector.cpp usage may have a nullptr Scope
and can trigger an assertion failure, so I don't migrate it.
Reviewed By: #debug-info, dblaikie
Differential Revision: https://reviews.llvm.org/D93087
The lowering of vector selects needs to first splat the scalar mask into a vector
first.
This was causing a crash when building oggenc in the test suite.
Differential Revision: https://reviews.llvm.org/D91655
It's fairly common to need matchers for a specific constant value, or for
common idioms like finding a negated register.
Add
- `m_SpecificICst`, which returns true when matching a specific value..
- `m_ZeroInt`, which returns true when an integer 0 is matched.
- `m_Neg`, which returns when a register is negated.
Also update a few places which use idioms related to the new matchers.
Differential Revision: https://reviews.llvm.org/D91397
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
We have a frequent pattern where we're merging two KnownBits to get the common/shared bits, and I just fell for the gotcha where I tried to use the & operator to merge them........
We can use KnownBitsAnalysis to cover cases when mask is not trivial. It can
also help with cases when mask is not constant but can still be folded into
one. Since 'and' is comutative we should treat both operands as possible
replacements.
Differential Revision: https://reviews.llvm.org/D90674
This sequence of instructions can be simplified if they are single use and
some operands are constants. Additional combines may be applied afterwards.
Differential Revision: https://reviews.llvm.org/D90223
Sequence of same shift instructions with constant operands can be combined into
a single shift instruction.
Differential Revision: https://reviews.llvm.org/D90217
Convert GISelKnownBits.computeKnownBitsImpl shift handling to use the common KnownBits implementations, which makes use of the known leading/trailing bits for shifted values in cases where we don't know the shift amount value, as detailed in https://blog.regehr.org/archives/1709
Differential Revision: https://reviews.llvm.org/D90527
https://reviews.llvm.org/D88060
This adds the following combines
1) build_vector formation from insert_vec_elts
2) insert_vec_elts (build_vector) -> build_vector
In certain places in llvm/lib/CodeGen we were relying upon the TypeSize
comparison operators when in fact the code was only ever expecting
either scalar values or fixed width vectors. I've changed some of these
places to use the equivalent scalar operator.
Differential Revision: https://reviews.llvm.org/D88482
In order to prevent the ExpandReductions pass from expanding some intrinsics
before they get to codegen, I had to add a -disable-expand-reductions flag
for testing purposes.
Differential Revision: https://reviews.llvm.org/D89028
https://reviews.llvm.org/D88865
This adds a single combine for GlobalISel to fold:
ptradd (inttoptr C1) C2
Into:
C1 + C2
Additionally, a small test for AArch64 is added.
Patch by pnappa.
When the first operand is a null pointer we can avoid making a G_PTR_ADD and
make a G_INTTOPTR with the offset operand.
This helps us avoid making add with 0 later on for targets such as AMDGPU.
Differential Revision: https://reviews.llvm.org/D87140
If the known shift amount is bigger than or equal to the bitwidth of the type of the value to be shifted,
the result is target dependent, so don't try to infer any bits.
This fixes a crash we've seen in one of our internal test suites.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D89232
The IRTranslator depends on the branch probability info pass when the
optimization level is different than None and it depends all the time on
the StackProtector pass.
We have to explicitly call out pass dependencies otherwise the pass manager
may not be able to schedule the IRTranslator.
Before this patch, we were lucky because previous passes depend on the branch
probability info pass (like the Global Variable Optimization) and the stack
protector pass is initialized in initializeCodeGen.
However, if the target has a custom pipeline without any passes like Global
Variable Optimization, the pipeline creation will fail, at least because of
the branch probability info pass dependency (it is unlikely that
initializeCodeGen is not called).
This patch adds the missing dependencies to the IRTranslator.
Differential Revision: https://reviews.llvm.org/D89063
If a CSEMIRBuilder query hits the instruction at the current insert point,
move insert point ahead one so that subsequent uses of the builder don't end up with
uses before defs.
This fix also shows that AMDGPU was also affected by this bug often, but got away
with it because it was using a G_IMPLICIT_DEF before the use.
Differential Revision: https://reviews.llvm.org/D88605
Before, for each original argument i, ValNo was set to i + PartIdx, but
ValNo is intended to reflect the index of the value before splitting.
Hence, ValNo should always be set to i and not consider the PartIdx.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D86511
During lowering of G_UMULO and friends, the previous code moved the builder's
insertion point to be after the legalizing instruction. When that happened, if
there happened to be a "G_CONSTANT i32 0" immediately after, the CSEMIRBuilder
would try to find that constant during the buildConstant(zero) call, and since
it dominates itself would return the iterator unchanged, even though the def
of the constant was *after* the current insertion point. This resulted in the
compare being generated *before* the constant which it was using.
There's no need to modify the insertion point before building the mul-hi or
constant. Delaying moving the insert point ensures those are built/CSEd before
the G_ICMP is built.
Fixes PR47679
Differential Revision: https://reviews.llvm.org/D88514
Fix creation of illegal unmerge when widen was requested to a type which
is not a multiple of the destination type. E.g. when trying to widen
an s48 unmerge to s64 the existing code would create an illegal unmerge
from s64 to s48.
Instead, create further unmerges to a GCD type, then use this to remerge
these intermediate results to the actual destinations.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D88422
When we see this:
```
%and = G_AND %x, %y
%xor = G_XOR %and, %y
```
Produce this:
```
%not = G_XOR %x, -1
%new_and = G_AND %not, %y
```
as long as we are guaranteed to eliminate the original G_AND.
Also matches all commuted forms. E.g.
```
%and = G_AND %y, %x
%xor = G_XOR %y, %and
```
will be matched as well.
Differential Revision: https://reviews.llvm.org/D88104
Previously, if a floating-point type was legal, but FNEG wasn't legal,
we would use FSUB. Instead, we should use integer ops, to preserve the
semantics. (Alternatively, there's a compiler-rt call we could use, but
there isn't much reason to use that.)
It turns out we actually are still using this obscure codepath in a few
cases: on some targets, we have "legal" floating-point types that don't
actually support any floating-point operations. In particular, ARM and
AArch64 are using this path.
The implementation for SelectionDAG is pretty simple because we can
reuse the infrastructure from FCOPYSIGN.
See also 9a3dc3e, the corresponding change to type legalization.
Also includes a "bonus" change to STRICT_FSUB legalization, so we can
lower a STRICT_FSUB to a float libcall.
Includes the changes to both LegalizeDAG and GlobalISel so we don't have
inconsistent results in the future.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46792 .
Differential Revision: https://reviews.llvm.org/D84287
The shift amount type does not necessarily match the result type. This
was inserting a trunc from s32 to s32, which asserted. Just preserve
the original shift amount type which can be legalized later.