The new code does not create new basic blocks in the case when shadow is a
compile-time constant; it generates either an unconditional __msan_warning
call or nothing instead.
llvm-svn: 226569
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
llvm-svn: 226048
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.
Just dropping the $name causes problems for
@foo = globabl i32 0, comdat
$bar = comdat ...
and
declare void @foo() comdat
$bar = comdat ...
So the syntax is changed to
@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat
and
declare void @foo() comdat($c1)
declare void @foo() comdat
llvm-svn: 225302
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
This commit changes the way we get fake stack from ASan runtime
(to find use-after-return errors) and the way we represent local
variables:
- __asan_stack_malloc function now returns pointer to newly allocated
fake stack frame, or NULL if frame cannot be allocated. It doesn't
take pointer to real stack as an input argument, it is calculated
inside the runtime.
- __asan_stack_free function doesn't take pointer to real stack as
an input argument. Now this function is never called if fake stack
frame wasn't allocated.
- __asan_init version is bumped to reflect changes in the ABI.
- new flag "-asan-stack-dynamic-alloca" allows to store all the
function local variables in a dynamic alloca, instead of the static
one. It reduces the stack space usage in use-after-return mode
(dynamic alloca will not be called if the local variables are stored
in a fake stack), and improves the debug info quality for local
variables (they will not be described relatively to %rbp/%rsp, which
are assumed to be clobbered by function calls). This flag is turned
off by default for now, but I plan to turn it on after more
testing.
llvm-svn: 224062
Introduce the ``llvm.instrprof_increment`` intrinsic and the
``-instrprof`` pass. These provide the infrastructure for writing
counters for profiling, as in clang's ``-fprofile-instr-generate``.
The implementation of the instrprof pass is ported directly out of the
CodeGenPGO classes in clang, and with the followup in clang that rips
that code out to use these new intrinsics this ends up being NFC.
Doing the instrumentation this way opens some doors in terms of
improving the counter performance. For example, this will make it
simple to experiment with alternate lowering strategies, and allows us
to try handling profiling specially in some optimizations if we want
to.
Finally, this drastically simplifies the frontend and puts all of the
lowering logic in one place.
llvm-svn: 223672
Do not realign origin address if the corresponding application
address is at least 4-byte-aligned.
Saves 2.5% code size in track-origins mode.
llvm-svn: 223464
MSan does not assign origin for instrumentation temps (i.e. the ones that do
not come from the application code), but "select" instrumentation erroneously
tried to use one of those.
https://code.google.com/p/memory-sanitizer/issues/detail?id=78
llvm-svn: 222918
Summary:
This change moves asan-coverage instrumentation
into a separate Module pass.
The other part of the change in clang introduces a new flag
-fsanitize-coverage=N.
Another small patch will update tests in compiler-rt.
With this patch no functionality change is expected except for the flag name.
The following changes will make the coverage instrumentation work with tsan/msan
Test Plan: Run regression tests, chromium.
Reviewers: nlewycky, samsonov
Reviewed By: nlewycky, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6152
llvm-svn: 221718
The variable is private, so the name should not be relied on. Also, the
linker uses the sections, so asan should too when trying to avoid causing
the linker problems.
llvm-svn: 221480
We currently have no infrastructure to support these correctly.
This is accomplished by generating a call to a runtime library function that
aborts at runtime in place of the regular wrapper for such functions. Direct
calls are rewritten in the usual way during traversal of the caller's IR.
We also remove the "split-stack" attribute from such wrappers, as the code
generator cannot currently handle split-stack vararg functions.
llvm-svn: 221360
Summary:
The previous calling convention prevented custom functions from being able
to access argument labels unless it knew how many variadic arguments there
were, and of which type. This restriction made it impossible to correctly
model functions in the printf family, as it is legal to pass more arguments
than required to those functions. We now pass arguments in the following order:
non-vararg arguments
labels for non-vararg arguments
[if vararg function, pointer to array of labels for vararg arguments]
[if non-void function, pointer to label for return value]
vararg arguments
Differential Revision: http://reviews.llvm.org/D6028
llvm-svn: 220906
Summary: Fixed memory accesses with rbp as a base or an index register.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5819
llvm-svn: 220283
Summary: [asan-asm-instrumentation] Fixed memory references which includes %rsp as a base or an index register.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5599
llvm-svn: 219602
This is somewhat the inverse of how similar bugs in DAE and ArgPromo
manifested and were addressed. In those passes, individual call sites
were visited explicitly, and then the old function was deleted. This
left the debug info with a null llvm::Function* that needed to be
updated to point to the new function.
In the case of DFSan, it RAUWs the old function with the wrapper, which
includes debug info. So now the debug info refers to the wrapper, which
doesn't actually have any instructions with debug info in it, so it is
ignored entirely - resulting in a DW_TAG_subprogram with no high/low pc,
etc. Instead, fix up the debug info to refer to the original function
after the RAUW messed it up.
Reviewed/discussed with Peter Collingbourne on the llvm-dev mailing
list.
llvm-svn: 219249
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
Because declarations of these functions can appear in places like autoconf
checks, they have to be handled somehow, even though we do not support
vararg custom functions. We do so by printing a warning and calling the
uninstrumented function, as we do for unimplemented functions.
llvm-svn: 216042
First, avoid calling setTailCall(false) on musttail calls. The funciton
prototypes should be "congruent", so the shadow layout should be exactly
the same.
Second, avoid inserting instrumentation after a musttail call to
propagate the return value shadow. We don't need to propagate the
result of a tail call, it should already be in the right place.
Reviewed By: eugenis
Differential Revision: http://reviews.llvm.org/D4331
llvm-svn: 215415
Instead of creating global variables for source locations and global names,
just create metadata nodes and strings. They will be transformed into actual
globals in the instrumentation pass (if necessary). This approach is more
flexible:
1) we don't have to ensure that our custom globals survive all the optimizations
2) if globals are discarded for some reason, we will simply ignore metadata for them
and won't have to erase corresponding globals
3) metadata for source locations can be reused for other purposes: e.g. we may
attach source location metadata to alloca instructions and provide better descriptions
for stack variables in ASan error reports.
No functionality change.
llvm-svn: 214604
Switch array type shadow from a single integer to
an array of integers (i.e. make it per-element).
This simplifies instrumentation of extractvalue and fixes PR20493.
llvm-svn: 214398
This is used to avoid instrumentation of instructions added by UBSan
in Clang frontend (see r213291). This fixes PR20085.
Reviewed in http://reviews.llvm.org/D4544.
llvm-svn: 213292
Origin is meaningless for fully initialized values. Avoid
storing origin for function arguments that are known to
be always initialized (i.e. shadow is a compile-time null
constant).
This is not about correctness, but purely an optimization.
Seems to affect compilation time of blacklisted functions
significantly.
llvm-svn: 213239
Currently ASan instrumentation pass creates a string with global name
for each instrumented global (to include global names in the error report). Global
name is already mangled at this point, and we may not be able to demangle it
at runtime (e.g. there is no __cxa_demangle on Android).
Instead, create a string with fully qualified global name in Clang, and pass it
to ASan instrumentation pass in llvm.asan.globals metadata. If there is no metadata
for some global, ASan will use the original algorithm.
This fixes https://code.google.com/p/address-sanitizer/issues/detail?id=264.
llvm-svn: 212872
With this change all values passed through blacklisted functions
become fully initialized. Previous behavior was to initialize all
loads in blacklisted functions, but apply normal shadow propagation
logic for all other operation.
This makes blacklist applicable in a wider range of situations.
It also makes code for blacklisted functions a lot shorter, which
works as yet another workaround for PR17409.
llvm-svn: 212268
See https://code.google.com/p/address-sanitizer/issues/detail?id=299 for the
original feature request.
Introduce llvm.asan.globals metadata, which Clang (or any other frontend)
may use to report extra information about global variables to ASan
instrumentation pass in the backend. This metadata replaces
llvm.asan.dynamically_initialized_globals that was used to detect init-order
bugs. llvm.asan.globals contains the following data for each global:
1) source location (file/line/column info);
2) whether it is dynamically initialized;
3) whether it is blacklisted (shouldn't be instrumented).
Source location data is then emitted in the binary and can be picked up
by ASan runtime in case it needs to print error report involving some global.
For example:
0x... is located 4 bytes to the right of global variable 'C::array' defined in '/path/to/file:17:8' (0x...) of size 40
These source locations are printed even if the binary doesn't have any
debug info.
This is an ABI-breaking change. ASan initialization is renamed to
__asan_init_v4(). Pre-built libraries compiled with older Clang will not work
with the fresh runtime.
llvm-svn: 212188
separate MDNode so they can be uniqued via folding set magic. To conserve
space, DIVariable nodes are still variable-length, with the last two
fields being optional.
No functional change.
http://reviews.llvm.org/D3526
llvm-svn: 212050
This new IR facility allows us to represent the object-file semantic of
a COMDAT group.
COMDATs allow us to tie together sections and make the inclusion of one
dependent on another. This is required to implement features like MS
ABI VFTables and optimizing away certain kinds of initialization in C++.
This functionality is only representable in COFF and ELF, Mach-O has no
similar mechanism.
Differential Revision: http://reviews.llvm.org/D4178
llvm-svn: 211920
Origin history should only be recorded for uninitialized values, because it is
meaningless otherwise. This change moves __msan_chain_origin to the runtime
library side and makes it conditional on the corresponding shadow value.
Previous code was correct, but _very_ inefficient.
llvm-svn: 211700
Multiplication by an integer with a number of trailing zero bits leaves
the same number of lower bits of the result initialized to zero.
This change makes MSan take this into account in the case of multiplication by
a compile-time constant.
We don't handle the general, non-constant, case because
(a) it's not going to be cheap (computation-wise);
(b) multiplication by a partially uninitialized value in user code is
a bad idea anyway.
Constant case must be handled because it appears from LLVM optimization of a
completely valid user code, as the test case in compiler-rt demonstrates.
llvm-svn: 211092
Init-order and use-after-return modes can currently be enabled
by runtime flags. use-after-scope mode is not really working at the
moment.
The only problem I see is that users won't be able to disable extra
instrumentation for init-order and use-after-scope by a top-level Clang flag.
But this instrumentation was implicitly enabled for quite a while and
we didn't hear from users hurt by it.
llvm-svn: 210924
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
llvm-svn: 210903
Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
llvm-svn: 210302
Don't assume that dynamically initialized globals are all initialized from
_GLOBAL__<module_name>I_ function. Instead, scan the llvm.global_ctors and
insert poison/unpoison calls to each function there.
Patch by Nico Weber!
llvm-svn: 209780
Most importantly, it gives debug location info to the coverage callback.
This change also removes 2 cases of unnecessary setDebugLoc when IRBuilder
is created with the same debug location.
llvm-svn: 208767
For now it contains a single flag, SanitizeAddress, which enables
AddressSanitizer instrumentation of inline assembly.
Patch by Yuri Gorshenin.
llvm-svn: 206971
This flag replaces inline instrumentation for checks and origin stores with
calls into MSan runtime library. This is a workaround for PR17409.
Disabled by default.
llvm-svn: 206585
After the -asan pass had been split into -asan (function-level) and -asan-module (module-level) some of the
tests have silently stopped working, because they didn't instrument the globals anymore.
We've decided to have every test using both passes, irrespective of the presence of globals in it.
llvm-svn: 204335
LLVM part of MSan implementation of advanced origin tracking,
when we record not only creation point, but all locations where
an uninitialized value was stored to memory, too.
llvm-svn: 204151
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
llvm-svn: 203559
r201608 made llvm corretly handle private globals with MachO. r201622 fixed
a bug in it and r201624 and r201625 were changes for using private linkage,
assuming that llvm would do the right thing.
They all got reverted because r201608 introduced a crash in LTO. This patch
includes a fix for that. The issue was that TargetLoweringObjectFile now has
to be initialized before we can mangle names of private globals. This is
trivially true during the normal codegen pipeline (the asm printer does it),
but LTO has to do it manually.
llvm-svn: 201700
Summary:
Before this change the instrumented code before Ret instructions looked like:
<Unpoison Frame Redzones>
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
Now the instrumented code looks like:
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
else
<Unpoison Frame Redzones>
Reviewers: eugenis
Reviewed By: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2458
llvm-svn: 197907
Currently SplitBlockAndInsertIfThen requires that branch condition is an
Instruction itself, which is very inconvenient, because it is sometimes an
Operator, or even a Constant.
llvm-svn: 197677
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).
The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.
This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.
Reviewers: samsonov, dvyukov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2324
llvm-svn: 196568
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
llvm-svn: 195504
The new command line flags are -dfsan-ignore-pointer-label-on-store and -dfsan-ignore-pointer-label-on-load. Their default value matches the current labelling scheme.
Additionally, the function __dfsan_union_load is marked as readonly.
Patch by Lorenzo Martignoni!
Differential Revision: http://llvm-reviews.chandlerc.com/D2187
llvm-svn: 195382
I was able to successfully run a bootstrapped LTO build of clang with
r194701, so this change does not seem to be the cause of our failing
buildbots.
llvm-svn: 194789
This reverts commit 194701. Apple's bootstrapped LTO builds have been failing,
and this change (along with compiler-rt 194702-194704) is the only thing on
the blamelist. I will either reappy these changes or help debug the problem,
depending on whether this fixes the buildbots.
llvm-svn: 194780
Indirect call wrapping helps MSanDR (dynamic instrumentation companion tool
for MSan) to catch all cases where execution leaves a compiler-instrumented
module by allowing the tool to rewrite targets of indirect calls.
This change is an optimization that skips wrapping for calls when target is
inside the current module. This relies on the linker providing symbols at the
begin and end of the module code (or code + data, does not really matter).
Gold linker provides such symbols by default. GNU (BFD) linker needs a link
flag: -Wl,--defsym=__executable_start=0.
More info:
https://code.google.com/p/memory-sanitizer/wiki/MSanDR#Native_exec
llvm-svn: 194697
LLVM optimizers may widen accesses to packed structures that overflow the structure itself, but should be in bounds up to the alignment of the object
llvm-svn: 193317
Summary:
Given a global array G[N], which is declared in this CU and has static initializer
avoid instrumenting accesses like G[i], where 'i' is a constant and 0<=i<N.
Also add a bit of stats.
This eliminates ~1% of instrumentations on SPEC2006
and also partially helps when asan is being run together with coverage.
Reviewers: samsonov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1947
llvm-svn: 192794
Currently MSan checks that arguments of *cvt* intrinsics are fully initialized.
That's too much to ask: some of them only operate on lower half, or even
quarter, of the input register.
llvm-svn: 192599
Remove the command line argument "struct-path-tbaa" since we should not depend
on command line argument to decide which format the IR file is using. Instead,
we check the first operand of the tbaa tag node, if it is a MDNode, we treat
it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
format.
When clang starts to use struct-path aware TBAA format no matter whether
struct-path-tbaa is no, and we can auto-upgrade existing bc files, the support
for scalar TBAA format can be dropped.
Existing testing cases are updated to use the struct-path aware TBAA format.
llvm-svn: 191538
Adds a flag to the MemorySanitizer pass that enables runtime rewriting of
indirect calls. This is part of MSanDR implementation and is needed to return
control to the DynamiRio-based helper tool on transition between instrumented
and non-instrumented modules. Disabled by default.
llvm-svn: 191006
Field 2 of DIType (Context), field 9 of DIDerivedType (TypeDerivedFrom),
field 12 of DICompositeType (ContainingType), fields 2, 7, 12 of DISubprogram
(Context, Type, ContainingType).
llvm-svn: 190205
Select condition shadow was being ignored resulting in false negatives.
This change OR-s sign-extended condition shadow into the result shadow.
llvm-svn: 189785
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
llvm-svn: 189282
The code was erroneously reading overflow area shadow from the TLS slot,
bypassing the local copy. Reading shadow directly from TLS is wrong, because
it can be overwritten by a nested vararg call, if that happens before va_start.
llvm-svn: 189104
DFSan changes the ABI of each function in the module. This makes it possible
for a function with the native ABI to be called with the instrumented ABI,
or vice versa, thus possibly invoking undefined behavior. A simple way
of statically detecting instances of this problem is to prepend the prefix
"dfs$" to the name of each instrumented-ABI function.
This will not catch every such problem; in particular function pointers passed
across the instrumented-native barrier cannot be used on the other side.
These problems could potentially be caught dynamically.
Differential Revision: http://llvm-reviews.chandlerc.com/D1373
llvm-svn: 189052
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
Summary:
When the -dfsan-debug-nonzero-labels parameter is supplied, the code
is instrumented such that when a call parameter, return value or load
produces a nonzero label, the function __dfsan_nonzero_label is called.
The idea is that a debugger breakpoint can be set on this function
in a nominally label-free program to help identify any bugs in the
instrumentation pass causing labels to be introduced.
Reviewers: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1405
llvm-svn: 188472
This replaces the old incomplete greylist functionality with an ABI
list, which can provide more detailed information about the ABI and
semantics of specific functions. The pass treats every function in
the "uninstrumented" category in the ABI list file as conforming to
the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
additional categories for those functions, a call to one of those
functions will produce a warning message, as the labelling behaviour
of the function is unknown. The other supported categories are
"functional", "discard" and "custom".
- "discard" -- This function does not write to (user-accessible) memory,
and its return value is unlabelled.
- "functional" -- This function does not write to (user-accessible)
memory, and the label of its return value is the union of the label of
its arguments.
- "custom" -- Instead of calling the function, a custom wrapper __dfsw_F
is called, where F is the name of the function. This function may wrap
the original function or provide its own implementation.
Differential Revision: http://llvm-reviews.chandlerc.com/D1345
llvm-svn: 188402
It is breaking builbots with libgmalloc enabled on Mac OS X.
$ cd llvm ; mkdir release ; cd release
$ ../configure --enable-optimized —prefix=$PWD/install
$ make
$ make check
$ Release+Asserts/bin/llvm-lit -v --param use_gmalloc=1 --param \
gmalloc_path=/usr/lib/libgmalloc.dylib \
../test/Instrumentation/DataFlowSanitizer/args-unreachable-bb.ll
llvm-svn: 188142
This moves removeUnreachableBlocksFromFn from SimplifyCFGPass.cpp
to Utils/Local.cpp and uses it to replace the implementation of
llvm::removeUnreachableBlocks, which appears to do a strict subset
of what removeUnreachableBlocksFromFn does.
Differential Revision: http://llvm-reviews.chandlerc.com/D1334
llvm-svn: 188119
DataFlowSanitizer is a generalised dynamic data flow analysis.
Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.
Differential Revision: http://llvm-reviews.chandlerc.com/D965
llvm-svn: 187923
The globals being generated here were given the 'private' linkage type. However,
this caused them to end up in different sections with the wrong prefix. E.g.,
they would be in the __TEXT,__const section with an 'L' prefix instead of an 'l'
(lowercase ell) prefix.
The problem is that the linker will eat a literal label with 'L'. If a weak
symbol is then placed into the __TEXT,__const section near that literal, then it
cannot distinguish between the literal and the weak symbol.
Part of the problems here was introduced because the address sanitizer converted
some C strings into constant initializers with trailing nuls. (Thus putting them
in the __const section with the wrong prefix.) The others were variables that
the address sanitizer created but simply had the wrong linkage type.
llvm-svn: 187827
Before this change, each module defined a weak_odr global __msan_track_origins
with a value of 1 if origin tracking is enabled, 0 if disabled. If there are
modules with different values, any of them may win. If 0 wins, and there is at
least one module with 1, the program will most likely crash.
With this change, __msan_track_origins is only emitted if origin tracking is
on. Then runtime library detects if there is at least one module with origin
tracking, and enables runtime support for it.
llvm-svn: 182997
This reverts commit 342d92c7a0adeabc9ab00f3f0d88d739fe7da4c7.
Turns out we're going with a different schema design to represent
DW_TAG_imported_modules so we won't need this extra field.
llvm-svn: 178215
This is just the basic groundwork for supporting DW_TAG_imported_module but I
wanted to commit this before pushing support further into Clang or LLVM so that
this rather churny change is isolated from the rest of the work. The major
churn here is obviously adding another field (within the common DIScope prefix)
to all DIScopes (files, classes, namespaces, lexical scopes, etc). This should
be the last big churny change needed for DW_TAG_imported_module/using directive
support/PR14606.
llvm-svn: 178099
This is the first step to making all DIScopes have a common metadata prefix (so
that things (using directives, for example) that can appear in any scope can be
added to that common prefix). DIFile is itself a DIScope so the common prefix
of all DIScopes cannot be a DIFile - instead it's the raw filename/directory
name pair.
llvm-svn: 177239
Shadow checks are disabled and memory loads always produce fully initialized
values in functions that don't have a sanitize_memory attribute. Value and
argument shadow is propagated as usual.
This change also updates blacklist behaviour to match the above.
llvm-svn: 176247
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
llvm-svn: 176075
This patch makes asan instrument memory accesses with unusual sizes (e.g. 5 bytes or 10 bytes), e.g. long double or
packed structures.
Instrumentation is done with two 1-byte checks
(first and last bytes) and if the error is found
__asan_report_load_n(addr, real_size) or
__asan_report_store_n(addr, real_size)
is called.
Also, call these two new functions in memset/memcpy
instrumentation.
asan-rt part will follow.
llvm-svn: 175507
It is way too slow. Change the default option value to 0.
Always do exact shadow propagation for unsigned ICmp with constants, it is
cheap (under 1% cpu time) and required for correctness.
llvm-svn: 173682
Only for integers, pointers, and vectors of those. No floats.
Instrumentation seems very heavy, and may need to be replaced
with some approximation in the future.
llvm-svn: 173452
This fixes va_start/va_copy of a va_list field which happens to not
be laid out at a 16-byte boundary.
Differential Revision: http://llvm-reviews.chandlerc.com/D276
llvm-svn: 172128
This changes adds shadow and origin propagation for unknown intrinsics
by examining the arguments and ModRef behaviour. For now, only 3 classes
of intrinsics are handled:
- those that look like simple SIMD store
- those that look like simple SIMD load
- those that don't have memory effects and look like arithmetic/logic/whatever
operation on simple types.
llvm-svn: 170530
When ASan replaces <alloca instruction> with
<offset into a common large alloca>, it should also patch
llvm.dbg.declare calls and replace debug info descriptors to mark
that we've replaced alloca with a value that stores an address
of the user variable, not the user variable itself.
See PR11818 for more context.
llvm-svn: 169984
Instead of unconditionally storing origin with every application store,
only do this when the shadow of the stored value is != 0.
This change also delays instrumentation of stores until after the walk over
function's instructions, because adding new basic blocks confuses InstVisitor.
We only keep 1 origin value per 4 bytes of application memory. This change
fixes the bug when a store of a single clean byte wiped the origin for the
whole 4-byte area.
Since stores of uninitialized values are relatively uncommon, this change
improves performance of track-origins mode by 5% median and by up to 47% on
specs.
llvm-svn: 169490