- In certain cases, a generic pointer could be assumed as a pointer to
the global memory space or other spaces. With a dedicated target hook
to query that address space from a given value, infer-address-space
pass could infer and propagate that to all its users.
Differential Revision: https://reviews.llvm.org/D91121
This reverts commits:
* [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
b873aba394.
* [LoopVectorizer] Silence warning in GetRegUsage.
9ff701100a.
This is more accurate than dividing the bitwidth based on the element count by the
maximum register size, as it can just reuse whatever has been calculated for
legalization of these types.
This change is also necessary when calculating register usage for scalable vectors, where
the legalization of these types cannot be done based on the widest register size, because
that does not take the 'vscale' component into account.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D91059
This reverts the revert commit 408c4408fa.
This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.
Original message:
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Reviewed By: dmgreen, RKSimon
Differential Revision: https://reviews.llvm.org/D90070
This appears to be an error of code duplication - instead of
one constructor variant calling another, we have N similar
but not identical versions.
I think this is 'NFC' based on the current callers, but it's
hard to tell or guess the intent in all cases.
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.
Differential Revision: https://reviews.llvm.org/D87457
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.
For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.
Differential Revision: https://reviews.llvm.org/D75512
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.
Differential Revision: https://reviews.llvm.org/D85980
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types. Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization. Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.
For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.
To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.
Original patch by Pierre van Houtryve
Differential Revision: https://reviews.llvm.org/D79162
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.
Author: sidbav (Sidharth Baveja)
Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)
Reviewed By: Meinersbur (Michael Kruse)
Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80580
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.
Reviewers: samparker
Reviewed By: samparker
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82383
Have TTI::getInstructionThroughput call getUserCost for Br, Ret and
PHI. This now means that eveything in getInstructionThroughput is
handled by getUserCost.
Differential Revision: https://reviews.llvm.org/D79849
Enable TTIImpl::getUserCost to handle FNeg so that
getInstructionThroughput can call that instead. This means we can
remove the code in the AMDGPU backend too.
Differential Revision: https://reviews.llvm.org/D81635
Move the cost modelling, with the reduction pattern matching, from
getInstructionThroughput into generic TTIImpl::getUserCost. The
modelling in the AMDGPU backend can now be removed.
Differential Revision: https://reviews.llvm.org/D81643
Extract the existing code from getInstructionThroughput into
TTImpl::getUserCost. The duplicated code in the AMDGPU backend has
also been removed.
Differential Revision: https://reviews.llvm.org/D81448
Add the remaining arithmetic opcodes into the generic implementation
of getUserCost and then call this from getInstructionThroughput. Most
of the backends have been modified to return the base implementation
for cost kinds other RecipThroughput. The outlier here is AMDGPU
which already uses getArithmeticInstrCost for all the cost kinds.
This change means that most of the opcodes can be removed from that
backends implementation of getUserCost.
Differential Revision: https://reviews.llvm.org/D80992
Add cases for icmp, fcmp and select into the switch statement of the
generic getUserCost implementation with getInstructionThroughput then
calling into it. The BasicTTI and backend implementations have be set
to return a default value (1) when a cost other than throughput is
being queried.
Differential Revision: https://reviews.llvm.org/D80550
Use getMemoryOpCost from the generic implementation of getUserCost
and have getInstructionThroughput return the result of that for loads
and stores.
This also means that the X86 implementation of getUserCost can be
removed with the functionality folded into its getMemoryOpCost.
Differential Revision: https://reviews.llvm.org/D80984
This is split off from D79100 and adds a new target hook emitGetActiveLaneMask
that can be queried to check if the intrinsic @llvm.get.active.lane.mask() is
supported by the backend and if it should be emitted for a given loop.
See also commit rG7fb8a40e5220 and its commit message for more details/context
on this new intrinsic.
Differential Revision: https://reviews.llvm.org/D80597
This one is slightly odd since it counts as an address expression,
which previously could never fail. Allow the existing TTI hook to
return the value to use, and re-use it for handling how to handle
ptrmask.
Handles the no-op addrspacecasts for AMDGPU. We could probably do
something better based on analysis of the mask value based on the
address space, but leave that for now.
Last part of recommitting 'Unify Intrinsic Costs'
259eb619ff. This patch now uses
getUserCost from getInstructionThroughput.
Differential Revision: https://reviews.llvm.org/D80012
Add the remaining cast instruction opcodes to the base implementation
of getUserCost and directly return the result. This allows
getInstructionThroughput to return getUserCost for the casts. This
has required changes to PPC and SystemZ because they implement
getUserCost and/or getCastInstrCost with adjustments for vector
operations. Adjusts have also been made in the remaining backends
that implement the method so that they still produce a cost of zero
or one for cost kinds other than throughput.
Differential Revision: https://reviews.llvm.org/D79848
Recommitting most of the remaining changes from
259eb619ff, but excluding the call to
getUserCost from getInstructionThroughput. Though there's still no
test changes, I doubt that this is an NFC...
With the two getIntrinsicInstrCosts folded into one, now fold in the
scalar/code-size orientated getIntrinsicCost. The remaining scalar
intrinsics were memcpy, cttz and ctlz which now have special handling
in the BasicTTI implementation.
This had required a change in the AMDGPU backend for fabs as it
should always be 'free'. I've also changed the X86 backend to return
the BaseT implementation when the CostKind isn't RecipThroughput.
Differential Revision: https://reviews.llvm.org/D80012
With the two getIntrinsicInstrCosts folded into one, now fold in the
scalar/code-size orientated getIntrinsicCost. This involved sinking
cost of the TTIImpl into the base implementation, as it performs no
target checks. The opcodes remaining were memcpy, cttz and ctlz which
now have special handling in the BasicTTI implementation.
getInstructionThroughput can now directly return the result of
getUserCost.
This had required a change in the AMDGPU backend for fabs and its
always 'free'. I've also changed the X86 backend to return '1' for
any intrinsic when the CostKind isn't RecipThroughput.
Though this intended to be a non-functional change, there are many
paths being combined here so I would be very surprised if this didn't
have an effect.
Differential Revision: https://reviews.llvm.org/D80012
This has not been implemented by any backends which appear to cover
the functionality through getCastInstrCost. Sink what there is in the
default implementation into BasicTTI.
Differential Revision: https://reviews.llvm.org/D78922
Combine the two API calls into one by introducing a structure to hold
the relevant data. This has the added benefit of moving the boiler
plate code for arguments and flags, into the constructors. This is
intended to be a non-functional change, but the complicated web of
logic involved here makes it very hard to guarantee.
Differential Revision: https://reviews.llvm.org/D79941
This patch adds a new TTI hook to allow targets to tell LSR that
a chain including some instruction is already profitable and
should not be optimized. This patch also adds an implementation
of this TTI hook for ARM so LSR doesn't optimize chains that include
the VCTP intrinsic.
Differential Revision: https://reviews.llvm.org/D79418
getScalarizationOverhead is only ever called with vectors (and we already had a load of cast<VectorType> calls immediately inside the functions).
Followup to D78357
Reviewed By: @samparker
Differential Revision: https://reviews.llvm.org/D79341