Msvc has trouble defining a struct/class and defining a constexpr symbol in the same declarator. It reports the following error:
```
basic-parsers.h(809): error C2131: expression did not evaluate to a constant
basic-parsers.h(809): note: failure was caused by call of undefined function or one not declared 'constexpr'
basic-parsers.h(809): note: see usage of 'Fortran::parser::OkParser::OkParser'
```
Fix the msvc compilation by splitting the two definitions into two separate declarators.
This patch is part of the series to [[ http://lists.llvm.org/pipermail/flang-dev/2020-July/000448.html | make flang compilable with MS Visual Studio ]].
Reviewed By: DavidTruby, klausler
Differential Revision: https://reviews.llvm.org/D85937
When we report an error for a bad character kind, don't keep it in the
`DeclTypeSpec`. Otherwise there could be further problems. In this case,
`ComputeOffsets()` got an assertion error because we didn't recognize
`CHARACTER(*,8)` as needing a descriptor because of the bad kind.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47173
Differential Revision: https://reviews.llvm.org/D86357
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.
For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.
Differential Revision: https://reviews.llvm.org/D86121
When a procedure name was used on the RHS of an assignment we were not
reporting the error. When one was used in an expression the error
message wasn't very good (e.g. "Operands of + must be numeric; have
INTEGER(4) and untyped").
Detect these cases in ArgumentAnalyzer and emit better messages,
depending on whether the named procedure is a function or subroutine.
Procedure names may appear as actual arguments to function and
subroutine calls so don't report errors in those cases. That is the same
case where assumed type arguments are allowed, so rename `isAssumedType_`
to `isProcedureCall_` and use that to decide if it is an error.
Differential Revision: https://reviews.llvm.org/D86107
Use the TableGen directive back-end to generate code for the clauses unparsing.
Reviewed By: sscalpone, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D85851
As with use-associated symbols, copy the attributes and flags from the
original symbol onto host-associated symbols when they are created.
This was showing up as an error on a deallocate of a host-associated
name. We reported an error because the symbol didn't have the POINTER
or ALLOCATABLE attribute.
Differential Revision: https://reviews.llvm.org/D85763
OpenACC combined construct can have an optional end directive. This patch handle this
case in the parsing/unparsing with a canonicalization step. Unlike OmpEndLoopDirective,
this doesn't need a special treatment in the pre-fir tree as there is no clause attached to
a AccEndCombinedDirective.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D84481
The shape (esp. the size) of the result of a call to TRANSFER
is implemented according to the definition in the standard.
Differential Revision: https://reviews.llvm.org/D85866
Character literal substrings used as arguments were causing asserts. This
happened when the code was trying to get the DynamicType of the substring. We
were only recording the DynamicType of the Designator on which the substring
was based. For character literal substrings, the Designator was a character
literal, and we weren't handling getting its type.
I fixed this by changing the `GetType()` method for `DynamicType` to check to
see if we were getting the type of a `Substring` and calculating the type of
the substring by getting the number of bytes in an element of the string.
I also changed the test `resolve49.f90` with some tests, one of which causes
the original crash.
Differential Revision: https://reviews.llvm.org/D85908
If an unrestricted specific intrinsic function name is first encountered
as an actual argument, it should be interpreted as an object entity,
not a procedure entity.
Fix some tests that depended on the previous interpretation by adding
explicit INTRINSIC statements.
Differential Revision: https://reviews.llvm.org/D85792
Allow compiler directives in the implicit-part and before USE statements
in the specification-part.
Differential Revision: https://reviews.llvm.org/D85693
This patch takes advantage of the directive information and tablegen generation
to replace the clauses class parse tree and in the dump parse tree sections.
Reviewed By: sscalpone
Differential Revision: https://reviews.llvm.org/D85549
This patch takes advantage of the directive information and tablegen generation
to replace the clauses class parse tree and in the dump parse tree sections.
Reviewed By: sscalpone
Differential Revision: https://reviews.llvm.org/D85549
If a bound of a subscript triplet is present but fails to analyze
due to an error, return nullopt rather than returning a Triplet with
that bound missing. This is so we can distinguish an absent bound from
an erroneous one and avoid spurious errors.
Differential Revision: https://reviews.llvm.org/D85672
To prevent mistokenization of CHARACTER*2HXY as a Hollerith
literal constant while allowing it in DATA A/2*2HXY/, there's
a little state that tracks whether a / has been seen earlier
in the same statement. But it was being reset on each line,
not statement, so Hollerith in a DATA statement continuation
line was incorrectly tokenized. Fixed.
Differential Revision: https://reviews.llvm.org/D85571
Objects that are storage associated by EQUIVALENCE and
initialized with DATA are initialized by creating a
compiler temporary data object in the same scope,
assigning it an offset, type, and size that covers the
transitive closure of the associated initialized original
symbols, and combining their initializers into one common
initializer for the temporary.
Some problems with offset assignment of EQUIVALENCE'd objects
in COMMON were exposed and corrected, and some more error
cases are checked.
Remove obsolete function.
Small bugfix (nested implied dos).
Add a test.
Fix struct/class warning.
Differential Revision: https://reviews.llvm.org/D85560
In the example below we were producing the error message
"Assignment to constant 'f' is not allowed":
```
function f() result(r)
f = 1.0
end
```
This changes it to a more helpful message when the LHS is a subprogram
name and also mentions the function result name when it's a function.
Differential Revision: https://reviews.llvm.org/D85483
Add `-fimplicit-none-type-always` to treat each specification-part
like it has `IMPLICIT NONE`. This is helpful for enforcing good Fortran
programming practices. We might consider something similar for
`IMPLICIT NONE(EXTERNAL)` as well.
Add `-fimplicit-none-type-never` to ignore occurrences of `IMPLICIT NONE`
and `IMPLICIT NONE(TYPE)`. This is to handle cases like the one below,
which violates the standard but it accepted by some compilers:
```
subroutine s(a, n)
implicit none
real :: a(n)
integer :: n
end
```
Differential Revision: https://reviews.llvm.org/D85363
Clang 9 gets the following warning after revision `D85104`.
```
../../flang/lib/Semantics/check-directive-structure.h:36:7: error: 'Fortran::semantics::DirectiveStructureChecker<llvm::omp::Directive, llvm::omp::Clause, Fortran::parser::OmpClause, 77>' has virtual functions but non-virtual destructor [-Werror,-Wnon-virtual-dtor]
```
The fix is the make the destructor virtual. Neither it nor the
constructor need to be public, so make them protected.
Differential Revision: https://reviews.llvm.org/D85383
This patch remove duplicated code between the check-omp-structure and the check-acc-structure
and unify it into a check-directive-structure templated class.
Reviewed By: kiranchandramohan, sscalpone, ichoyjx
Differential Revision: https://reviews.llvm.org/D85104
- Moved TypeRange into its own header/cpp file, and add hashing support.
- Change FunctionType::get() and TupleType::get() to use TypeRange
Differential Revision: https://reviews.llvm.org/D85075
This patch lower `!OMP PARALLEL` construct from PFT to OpenMPDialect operations.
This is first patch in this direction(lowering parallel construct).
OpenMP parallel construct can have multiple clauses and parameters. This patch
only implements lowering of an empty(contains no code in body) parallel construct
without any clauses or parameters.
Patch is carved out of following approved PR:
https://github.com/flang-compiler/f18-llvm-project/pull/322
Reviewed By: kiranchandramohan, DavidTruby
Differential Revision: https://reviews.llvm.org/D84965
1. Annotate the sources with constraint numbers.
2. Add tests for
*C7107 (R765) digit shall have one of the values 0 or 1.
*C7108 (R766) digit shall have one of the values 0 through 7.
*C7109 (R764) A boz-literal-constant shall appear only as a data-stmt-constant in a DATA statement, or where explicitly allowed in 16.9 as an actual argument of an intrinsic procedure.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D84504
CMPLX folding was expecting only one arguments in case X argument
is complex. This is wrong since there is also the optional KIND
argument.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D84936
I fixed an assert caused by passing an empty array as the source= argument to
RESHAPE(). In the process, I noticed that there were no tests for RESHAPE(),
so I wrote a test that covers all the description in 16.9.163. In the process,
I made the error messages more consistent and descriptive. I also changed the
test to see if a reference to an intrinsic function was a constant to say that
it is a constant if it's a refererence to an invalid intrinsic. This avoids
emitting multiple messages for the same erroneous source.
Differential Revision: https://reviews.llvm.org/D84904
When declaring the same variable twice with an initialization, we were failing
an internal check. I fixed this by checking to see if the associated symbol
already had an error.
I added tests for pointer and non-pointer initialization of duplicate names.
Differential Revision: https://reviews.llvm.org/D84969
To make it easier for lowering to identify which symbols from the host
are captured by internal subprograms, create HostAssocDetails for them.
In particular, if a symbol is referenced and it is contained in a
subprogram or main program that is not the same as the containing
program unit of the reference, a HostAssocDetails symbol is created
in the current scope.
Differential Revision: https://reviews.llvm.org/D84889
The intrinsic lowering facility is based on the generic intrinsic names to avoid
duplicating implementations. Specific intrinsics call are re-written to call to
the generic versions by the front-end but this cannot be done when specific intrinsics
are passed as arguments (the rewrite would give illegal/ambiguous unparsed Fortran).
Solve the issue by making the specific to generic name mapping accessible to lowering
and can be later used to generate the unrestricted intrinsic functions.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D84842
When an instrinsic function is declared in a type declaration statement
we need to set the INTRINSIC attribute and (per 8.2(3)) ignore the
specified type.
To simplify the check, add IsIntrinsic utility to BaseVisitor.
Also, intrinsics and external procedures were getting assigned a size
and offset and they shouldn't be.
Differential Revision: https://reviews.llvm.org/D84702
Move `ResolveAccParts` and `ResolveOmpParts` from resolve-names.cpp to
resolve-directives.{h,cpp}. Move the implementation in the classes
`DirectiveAttributeVisitor`, `AccAttributeVisitor`, and
`OmpAttributeVisitor` to resolve-directives.cpp as well.
To allow this to happen, move `EvaluateIntExpr` and introduce
`EvaluateInt64` to resolve-names-utils.h. The latter is also useful
elsewhere in resolve-names.cpp for converting an Expr to std::int64_t.
The other problem was that `ResolveDesignator` was called from the code
that was moved. At the moment it doesn't seem to be doing anything so I
removed the calls (and no tests failed). If it proves to be needed, we
can either resolve those designators in resolve-names.cpp or pass the
`ResolveDesignator` function in to the code that needs to call it.
Differential Revision: https://reviews.llvm.org/D84768
If a symbol (that is not a dummy argument) is implicitly declared inside
a statement function, don't create it in the statement function's scope.
Instead, treat statement functions like blocks when finding the inclusive
scope and create the symbol there.
Add a new flag, StmtFunction, to symbols that represent statement functions.
Differential Revision: https://reviews.llvm.org/D84588
The result of a statement function may require an implicit conversion
to match its result type. Add that to the expression that represents
the statement function body in SubprogramDetails.
Extract the analysis of that expression into a separate function.
Dump the statement function expression as part of the dump of
SubprogramDetails.
Differential Revision: https://reviews.llvm.org/D84452