analyses into LLVM's Analysis library rather than having them in
a Transforms library.
This is motivated by the need to have the core AliasAnalysis
infrastructure be aware of the ObjCARCAliasAnalysis. However, it also
seems like a nice and clean separation. Everything was very easy to move
and this doesn't create much clutter in the analysis library IMO.
Differential Revision: http://reviews.llvm.org/D12133
llvm-svn: 245541
Rewrite some code to not use a lambda function. The non-lambda code is just
about as clean as the original, and not any longer. The lambda function causes
an internal compiler error in GCC 4.8.0, and it is not worth breaking support
for that compiler over this. NFC.
llvm-svn: 245466
Fix how DependenceAnalysis calls delinearization, mirroring what is done in
Delinearization.cpp (mostly by making sure to call getSCEVAtScope before
delinearizing, and by removing the unnecessary 'Pairs == 1' check).
Patch by Vaivaswatha Nagaraj!
llvm-svn: 245408
Here we make ScalarEvolution::isKnownPredicate, indirectly, a little smarter.
Given some relational comparison operator OP, and two AddRec SCEVs, {I,+,S} OP
{J,+,T}, we can reduce this to the comparison I OP J when S == T, both AddRecs
are for the same loop, and both are known not to wrap.
As it turns out, because of the way that backedge-guard expressions can be
leveraged when computing known predicates, this allows indvars to simplify the
if-statement comparison in this loop:
void foo (int *a, int *b, int n) {
for (int i = 0; i < n; ++i) {
if (i > n)
a[i] = b[i] + 1;
}
}
which, somewhat surprisingly, we were not previously optimizing away.
llvm-svn: 245400
folding the code into the main Analysis library.
There already wasn't much of a distinction between Analysis and IPA.
A number of the passes in Analysis are actually IPA passes, and there
doesn't seem to be any advantage to separating them.
Moreover, it makes it hard to have interactions between analyses that
are both local and interprocedural. In trying to make the Alias Analysis
infrastructure work with the new pass manager, it becomes particularly
awkward to navigate this split.
I've tried to find all the places where we referenced this, but I may
have missed some. I have also adjusted the C API to continue to be
equivalently functional after this change.
Differential Revision: http://reviews.llvm.org/D12075
llvm-svn: 245318
Historically there seems to be some resistance regarding the change to DenseMap
(r147980). However, I couldn't find cases of iterator invalidation for
ValueCacheEntryTy, but only for ValueCache, which I left untouched.
This reduces 20s on an internal testcase. Follow up from r245309.
Differential Revision: http://reviews.llvm.org/D11651
rdar://problem/21320066
llvm-svn: 245314
Changes in LoopUnroll in the past six months exposed scalability
issues in LazyValueInfo when used from JumpThreading. One internal test
that used to take 20s under -O2 now takes 6min.
This commit change the OverDefinedCache from
DenseSet<std::pair<AssertingVH<BasicBlock>, Value*>> to
DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>>
and reduces compile time down to 1m40s.
Differential Revision: http://reviews.llvm.org/D11651
rdar://problem/21320066
llvm-svn: 245309
Primary purpose of this change is to reuse existing code inside findExistingExpansion. However it introduces very slight semantic change - findExistingExpansion now looks into exiting blocks instead of a loop latches. Originally heuristic was based on the fact that we want to look at the loop exit conditions. And since all exiting latches will be listed in the ExitingBlocks, heuristic stays roughly the same.
Differential Revision: http://reviews.llvm.org/D12008
llvm-svn: 245227
All possible ModRef behaviours can be completely represented using existing LLVM IR attributes.
Differential Revision: http://reviews.llvm.org/D12033
llvm-svn: 245224
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
analysis ...
It turns out that we *do* need the old CallGraph ported to the new pass
manager. There are times where this model of a call graph is really
superior to the one provided by the LazyCallGraph. For example,
GlobalsModRef very specifically needs the model provided by CallGraph.
While here, I've tried to make the move semantics actually work. =]
llvm-svn: 245170
infrastructure.
This AA was never used in tree. It's infrastructure also completely
overlaps that of TargetLibraryInfo which is used heavily by BasicAA to
achieve similar goals to those stated for this analysis.
As has come up in several discussions, the use case here is still really
important, but this code isn't helping move toward that use case. Any
progress on better supporting rich AA information for runtime library
environments would likely be better off starting from scratch or
starting from TargetLibraryInfo than from this base.
Differential Revision: http://reviews.llvm.org/D12028
llvm-svn: 245155
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
Summary:
http://reviews.llvm.org/D11212 made Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs for add instructions. This patch expands that to sub, mul and shl instructions.
This change makes LSR able to generate pointer induction variables for loops like these, where the index is 32 bit and the pointer is 64 bit:
for (int i = 0; i < numIterations; ++i)
sum += ptr[i - offset];
for (int i = 0; i < numIterations; ++i)
sum += ptr[i * stride];
for (int i = 0; i < numIterations; ++i)
sum += ptr[3 * (i << 7)];
Reviewers: atrick, sanjoy
Subscribers: sanjoy, majnemer, hfinkel, llvm-commits, meheff, jingyue, eliben
Differential Revision: http://reviews.llvm.org/D11860
llvm-svn: 245118
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
llvm-svn: 245029
its creation function.
This required shifting a bunch of method definitions to be out-of-line
so that we could leave most of the implementation guts in the .cpp file.
llvm-svn: 245021
I've used forward declarations and reorderd the source code some to make
this reasonably clean and keep as much of the code as possible in the
source file, including all the stratified set details. Just the basic AA
interface and the create function are in the header file, and the header
file is now included into the relevant locations.
llvm-svn: 245009
.cpp file to make the header much less noisy.
Also makes it easy to use a static helper rather than a public method
for printing lines of stats.
llvm-svn: 245006
pattern.
Also hoist the creation routine out of the generic header and into the
pass header now that we have one.
I've worked to not make any changes, even formatting ones here. I'll
clean up the formatting and other things in a follow-up patch now that
the code is in the right place.
llvm-svn: 245004
This debugger was designed to catch places where the old update API was
failing to be used correctly. As I've removed the update API, it no
longer serves any purpose. We can introduce new debugging aid passes
around any future work w.r.t. updating AAs.
Note that I've updated the documentation here, but really I need to
rewrite the documentation to carefully spell out the ideas around
stateful AA and how things are changing in the AA world. However, I'm
hoping to do that as a follow-up to the refactoring of the AA
infrastructure to work in both old and new pass managers so that I can
write the documentation specific to that world.
Differential Revision: http://reviews.llvm.org/D11984
llvm-svn: 244825
relying on sneaking it out of its AliasAnalysis.
This abuse of AA (to shuffle TLI around rather than explicitly depending
on it) is going away with my refactor of AA.
llvm-svn: 244778
The select pattern recognition in ValueTracking (as used by InstCombine
and SelectionDAGBuilder) only knew about integer patterns. This teaches
it about minimum and maximum operations.
matchSelectPattern() has been extended to return a struct containing the
existing Flavor and a new enum defining the pattern's behavior when
given one NaN operand.
C minnum() is defined to return the non-NaN operand in this case, but
the idiomatic C "a < b ? a : b" would return the NaN operand.
ARM and AArch64 at least have different instructions for these different cases.
llvm-svn: 244580
Summary:
This adds a hook to TTI which enables us to selectively turn on by default
interleaved access vectorization for targets on which we have have performed
the required benchmarking.
Reviewers: rengolin
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11901
llvm-svn: 244449
Summary:
Analogously to Function::viewCFG(), RegionInfo::view() and RegionInfo::viewOnly() are meant to be called in debugging sessions. They open a viewer to show how RegionInfo currently understands the region hierarchy.
The functions viewRegion(Function*) and viewRegionOnly(Function*) invoke a fresh region analysis of the function in contrast to viewRegion(RegionInfo*) and viewRegionOnly(RegionInfo*) which show the current analysis result.
Reviewers: grosser
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11875
llvm-svn: 244444
This allows printing region graphs when only the RegionInfo (e.g. Region::getRegionInfo()), but no RegionInfoPass object is available.
Specifically, we will use this to print RegionInfo graphs in the debugger.
Differential version: http://reviews.llvm.org/D11874
Reviewed-by: grosser
llvm-svn: 244442
We can only PHI translate instructions. In our attempt to PHI translate
a bitcast, we attempt to translate its operand; however, the operand
might be an argument or a global instead of an instruction. Benignly
bail out when this happens.
This fixes PR24397.
Differential Revision: http://reviews.llvm.org/D11879
llvm-svn: 244418
This is unused after filtering checks was moved to the clients.
As a result, we can just return the number of the checks in the
precomputed set.
llvm-svn: 244369
This is the full set of checks that clients can further filter. IOW,
it's client-agnostic. This makes LAA complete in the sense that it now
provides the two main results of its analysis precomputed:
1. memory dependences via getDepChecker().getInsterestingDependences()
2. run-time checks via getRuntimePointerCheck().getChecks()
However, as a consequence we now compute this information pro-actively.
Thus if the client decides to skip the loop based on the dependences
we've computed the checks unnecessarily. In order to see whether this
was a significant overhead I checked compile time on SPEC2k6 LTO bitcode
files. The change was in the noise.
The checks are generated in canCheckPtrAtRT, at the same place where we
used to call groupChecks to merge checks.
llvm-svn: 244368
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
llvm-svn: 244260
iisUnmovableInstruction() had a list of instructions hardcoded which are
considered unmovable. The list lacked (at least) an entry for the va_arg
and cmpxchg instructions.
Fix this by introducing a new Instruction::mayBeMemoryDependent()
instead of maintaining another instruction list.
Patch by Matthias Braun <matze@braunis.de>.
Differential Revision: http://reviews.llvm.org/D11577
rdar://problem/22118647
llvm-svn: 244244
This is the first mechanical step in preparation for making this and all
the other alias analysis passes available to the new pass manager. I'm
factoring out all the totally boring changes I can so I'm moving code
around here with no other changes. I've even minimized the formatting
churn.
I'll reformat and freshen comments on the interface now that its located
in the right place so that the substantive changes don't triger this.
llvm-svn: 244197
around a DataLayout interface in favor of directly querying DataLayout.
This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.
No functionality changed.
llvm-svn: 244189
pass manager.
This never worked, and won't ever work. It was actually why I ended up
building the LazyCallGraph set of code which is more more effectively
wired up to the new pass manager. This accidentally got committed when
I was trying to land a cleanup of the code organization in the other
parts of this file. =[ My bad, but fortunately Dave was keen eyed enough
to spot that this code couldn't possibly work. =]
llvm-svn: 244127
The only place that tries to return a CallGraph by value
(CallGraphAnalysis::run) doesn't seem to be used right now, but it's a
reasonable bit of cleanup anyway.
llvm-svn: 244122
rather than 'unsigned' for their costs.
For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).
All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.
This passes all tests, and is also UBSan clean.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D11741
llvm-svn: 244080
In PR24288 it was pointed out that the easy case of a non-escaping
global and something that *obviously* required an escape sometimes is
hidden behind PHIs (or selects in theory). Because we have this binary
test, we can easily just check that all possible input values satisfy
the requirement. This is done with a (very small) recursion through PHIs
and selects. With this, the specific example from the PR is correctly
folded by GVN.
Differential Revision: http://reviews.llvm.org/D11707
llvm-svn: 244078
Various value handles needed to be copy constructible and copy
assignable (mostly for their use in DenseMap). But to avoid an API that
might allow accidental slicing, make these members protected in the base
class and make derived classes final (the special members become
implicitly public there - but disallowing further derived classes that
might be sliced to the intermediate type).
Might be worth having a warning a bit like -Wnon-virtual-dtor that
catches public move/copy assign/ctors in classes with virtual functions.
(suppressable in the same way - by making them protected in the base,
and making the derived classes final) Could be fancier and only diagnose
them when they're actually called, potentially.
Also allow a few default implementations where custom implementations
(especially with non-standard return types) were implemented.
llvm-svn: 243909
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
This patch is a follow up from r240560 and is a step further into
mitigating the compile time performance issues in CaptureTracker.
By providing the CaptureTracker with a "cached ordered basic block"
instead of computing it every time, MemDepAnalysis can use this cache
throughout its calls to AA->callCapturesBefore, avoiding to recompute it
for every scanned instruction. In the same testcase used in r240560,
compile time is reduced from 2min to 30s.
This also fixes PR22348.
rdar://problem/19230319
Differential Revision: http://reviews.llvm.org/D11364
llvm-svn: 243750
Summary:
Make Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs in some cases. This is based on reasoning about when poison from instructions with these flags would trigger undefined behavior. This gives a 13% speed-up on some Eigen3-based Google-internal microbenchmarks for NVPTX.
There does not seem to be clear agreement about when poison should be considered to propagate through instructions. In this analysis, poison propagates only in cases where that should be uncontroversial.
This change makes LSR able to create induction variables for expressions like &ptr[i + offset] for loops like this:
for (int i = 0; i < limit; ++i) {
sum += ptr[i + offset];
}
Here ptr is a 64 bit pointer and offset is a 32 bit integer. For NVPTX, LSR currently creates an induction variable for i + offset instead, which is not as fast. Improving this situation is what brings the 13% speed-up on some Eigen3-based Google-internal microbenchmarks for NVPTX.
There are more details in this discussion on llvmdev.
June: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-June/thread.html#87234
July: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-July/thread.html#87392
Patch by Bjarke Roune
Reviewers: eliben, atrick, sanjoy
Subscribers: majnemer, hfinkel, jingyue, meheff, llvm-commits
Differential Revision: http://reviews.llvm.org/D11212
llvm-svn: 243460
no-alias with non-addr-taken globals: they cannot alias a captured
pointer.
If the non-global underlying object would have been a capture were it to
alias the global, we can firmly conclude no-alias. It isn't reasonable
for a transformation to introduce a capture in a way observable by an
alias analysis. Consider, even if it were to temporarily capture one
globals address into another global and then restore the other global
afterward, there would be no way for the load in the alias query to
observe that capture event correctly. If it observes it then the
temporary capturing would have changed the meaning of the program,
making it an invalid transformation. Even instrumentation passes or
a pass which is synthesizing stores to global variables to expose race
conditions in programs could not trigger this unless it queried the
alias analysis infrastructure mid-transform, in which case it seems
reasonable to return results from before the transform started.
See the comments in the change for a more detailed outlining of the
theory here.
This should address the primary performance regression found when the
non-conservatively-correct path of the alias query was disabled.
Differential Revision: http://reviews.llvm.org/D11410
llvm-svn: 243405
out the per-function modref data structures when functions were deleted
or when globals were deleted.
I don't actually know how the global deletion side of this bug hasn't
been hit before, but for the other it just-so-happens that functions
aren't likely to be deleted in the particular part of the LTO pipeline
where we currently enable GMR, so we got lucky.
With this patch, I can self-host with GMR enabled in the normal pass
pipeline!
I was a bit concerned about the compile-time impact of this chang, which
is part of what motivated my prior string of patches to make the
per-function datastructure very dense and fast to walk. With those
changes in place, I can't measure a significant compile time difference
(the difference is around 0.1% which is *way* below the noise) before
and after this patch when building a linked bitcode for all of Clang.
Differential Revision: http://reviews.llvm.org/D11453
llvm-svn: 243385
This is effectively an NFC but we can no longer print the index of the
pointer group so instead I print its address. This still lets us
cross-check the section that list the checks against the section that
list the groups (see how I modified the test).
E.g. before we printed this:
Run-time memory checks:
Check 0:
Comparing group 0:
%arrayidxC = getelementptr inbounds i16, i16* %c, i64 %store_ind
%arrayidxC1 = getelementptr inbounds i16, i16* %c, i64 %store_ind_inc
Against group 1:
%arrayidxA = getelementptr i16, i16* %a, i64 %ind
%arrayidxA1 = getelementptr i16, i16* %a, i64 %add
...
Grouped accesses:
Group 0:
(Low: %c High: (78 + %c))
Member: {%c,+,4}<%for.body>
Member: {(2 + %c),+,4}<%for.body>
Now we print this (changes are underlined):
Run-time memory checks:
Check 0:
Comparing group (0x7f9c6040c320):
~~~~~~~~~~~~~~
%arrayidxC1 = getelementptr inbounds i16, i16* %c, i64 %store_ind_inc
%arrayidxC = getelementptr inbounds i16, i16* %c, i64 %store_ind
Against group (0x7f9c6040c358):
~~~~~~~~~~~~~~
%arrayidxA1 = getelementptr i16, i16* %a, i64 %add
%arrayidxA = getelementptr i16, i16* %a, i64 %ind
...
Grouped accesses:
Group 0x7f9c6040c320:
~~~~~~~~~~~~~~
(Low: %c High: (78 + %c))
Member: {(2 + %c),+,4}<%for.body>
Member: {%c,+,4}<%for.body>
llvm-svn: 243354
Summary:
This function is not used in this change but will be used in a
subsequent change.
Reviewers: mcrosier, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9180
llvm-svn: 243347
Summary:
Was D9784: "Remove loop variant range check when induction variable is
strictly increasing"
This change re-implements D9784 with the two differences:
1. It does not use SCEVExpander and does not generate new
instructions. Instead, it does a quick local search for existing
`llvm::Value`s that it needs when modifying the `icmp`
instruction.
2. It is more general -- it deals with both increasing and decreasing
induction variables.
I've added all of the tests included with D9784, and two more.
As an example on what this change does (copied from D9784):
Given C code:
```
for (int i = M; i < N; i++) // i is known not to overflow
if (i < 0) break;
a[i] = 0;
}
```
This transformation produces:
```
for (int i = M; i < N; i++)
if (M < 0) break;
a[i] = 0;
}
```
Which can be unswitched into:
```
if (!(M < 0))
for (int i = M; i < N; i++)
a[i] = 0;
}
```
I went back and forth on whether the top level logic should live in
`SimplifyIndvar::eliminateIVComparison` or be put into its own
routine. Right now I've put it under `eliminateIVComparison` because
even though the `icmp` is not *eliminated*, it no longer is an IV
comparison. I'm open to putting it in its own helper routine if you
think that is better.
Reviewers: reames, nicholas, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11278
llvm-svn: 243331
The pointer size of the addrspacecasted pointer might not have matched,
so this would have hit an assert in accumulateConstantOffset.
I think this was here to allow constant folding of a load of an
addrspacecasted constant. Accumulating the offset through the
addrspacecast doesn't make much sense, so something else is necessary
to allow folding the load through this cast.
llvm-svn: 243300
r243250 appeared to break clang/test/Analysis/dead-store.c on one of the build
slaves, but I couldn't reproduce this failure locally. Probably a false
positive as I saw this test was broken by r243246 or r243247 too but passed
later without people fixing anything.
llvm-svn: 243253
Summary:
This patch updates TargetTransformInfoImplCRTPBase::getGEPCost to consider
addressing modes. It now returns TCC_Free when the GEP can be completely folded
to an addresing mode.
I started this patch as I refactored SLSR. Function isGEPFoldable looks common
and is indeed used by some WIP of mine. So I extracted that logic to getGEPCost.
Furthermore, I noticed getGEPCost wasn't directly tested anywhere. The best
testing bed seems CostModel, but its getInstructionCost method invokes
getAddressComputationCost for GEPs which provides very coarse estimation. So
this patch also makes getInstructionCost call the updated getGEPCost for GEPs.
This change inevitably breaks some tests because the cost model changes, but
nothing looks seriously wrong -- if we believe the new cost model is the right
way to go, these tests should be updated.
This patch is not perfect yet -- the comments in some tests need to be updated.
I want to know whether this is a right approach before fixing those details.
Reviewers: chandlerc, hfinkel
Subscribers: aschwaighofer, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D9819
llvm-svn: 243250
Summary:
The goal is to start moving us closer to the model where
RuntimePointerChecking will compute and store the checks. Then a client
can filter the check according to its requirements and then use the
filtered list of checks with addRuntimeCheck.
Before the patch, this is all done in addRuntimeCheck. So the patch
starts to split up addRuntimeCheck while providing the old API under
what's more or less a wrapper now.
The new underlying addRuntimeCheck takes a collection of checks now,
expands the code for the bounds then generates the code for the checks.
I am not completely happy with making expandBounds static because now it
needs so many explicit arguments but I don't want to make the type
PointerBounds part of LAI. This should get fixed when addRuntimeCheck
is moved to LoopVersioning where it really belongs, IMO.
Audited the assembly diff of the testsuite (including externals). There
is a tiny bit of assembly churn that is due to the different order the
code for the bounds is expanded now
(MultiSource/Benchmarks/Prolangs-C/bison/conflicts.s and with LoopDist
on 456.hmmer/fast_algorithms.s).
Reviewers: hfinkel
Subscribers: klimek, llvm-commits
Differential Revision: http://reviews.llvm.org/D11205
llvm-svn: 243239
more dense datastructure. We actually only have 3 bits of information
and an often-null pointer here. This fits very nicely into a
pointer-size value in the DenseMap from Function -> Info. Then we take
one more pointer hop to get to a secondary DenseMap from GlobalValue ->
ModRefInfo when we actually have precise info for particular globals.
This is more code than I would really like to do this packing, but it
ended up reasonably cleanly laid out. It should ensure we don't hit
scaling limitations with more widespread use of GMR.
llvm-svn: 242991
This takes the operation of merging a callee's information into the
current information and embeds it into the FunctionInfo type itself.
This is much cleaner as now we don't need to expose iteration of the
globals, etc.
Also, switched all the uses of a raw integer two maintain the mod/ref
info during the SCC walk into just directly manipulating it in the
FunctionInfo object.
llvm-svn: 242976
typed interface as a precursor to rewriting how it is stored.
This way we know that the access paths are controlled and it should be
easy to store these bits in a different way.
No functionality changed.
llvm-svn: 242974