When folding a shift into a test-under-mask comparison, make sure that
there is no loss of precision when creating the shifted comparison
value. This usually never happens, except for certain always-true
comparisons in unoptimized code.
Fixes PR35529.
llvm-svn: 319818
The MSVC driver and clang do not link against the C++ runtime
explicitly. Instead, they rely on the auto-linking via the pragma
(through `use_ansi.h`) to link against the correct version of the C++
runtime. Attempt to do something similar here so that linking real C++
code on Windows does not require the user to explicitly specify
`c++.lib` when using libc++ as a C++ runtime on windows.
llvm-svn: 319816
This is part of larger change to add synthetic symbols
for section start/end points and init/fini_array:
https://reviews.llvm.org/D40760
Allows synthetic global symbols to have an explicitly set
virtual address.
Differential Revision: https://reviews.llvm.org/D40843
llvm-svn: 319813
The runtime will use the global kmp_critical_name as a lock and
tries to atomically store a pointer in there. This will fail
if the global is only aligned by 4 bytes, the size of one int32_t
element. Use a union to ensure the global is aligned to the size
of a pointer on the current platform.
llvm-svn: 319811
This is not currently valid by the wasm spec, however:
- It replaces doing set_global on an immutable global, which is also
not valid.
- It's expected be valid in the near future:
https://github.com/WebAssembly/threads/blob/master/proposals/threads/Globals.md
- This only occurs before linking, so a fully linked object will be
valid.
llvm-svn: 319810
Surprisingly SIOptimizeExecMaskingPreRA can infinite loop
in some case with DBG_VALUE. Most tests using dbg_value are
run at -O0, so don't run this pass. This seems to only
happen when the value argument is undef.
llvm-svn: 319808
This uses ConstantRange::makeGuaranteedNoWrapRegion's newly-added handling for subtraction to allow CVP to remove some subtraction overflow checks.
Differential Revision: https://reviews.llvm.org/D40039
llvm-svn: 319807
Previously ConstantRange::makeGuaranteedNoWrapRegion only handled addition. This adds support for subtraction.
Differential Revision: https://reviews.llvm.org/D40036
llvm-svn: 319806
The parameter was previously renamed but MSVC path was not updated.
Patch by Andrey Khalyavin.
Differential Revision: https://reviews.llvm.org/D40774
llvm-svn: 319802
There's no such thing as a setcc with vector operands and scalar result. And if we're trying to widen the result we would have to already be looking at a vector result type.
So this patch renames the VSETCC function as the SETCC function and delete the original SETCC function.
llvm-svn: 319799
They are now printed as HeapSymRegion{$x} in order to discriminate between that
and regular SymRegion{$x}, which are two different regions, having different
parent reginos (memory spaces) - HeapSpaceRegion and UnknownSpaceRegion
respectively.
Differential Revision: https://reviews.llvm.org/D40793
llvm-svn: 319793
Summary:
It was deemed that the salt in the chunk header didn't improve security
significantly (and could actually decrease it). The initial idea was that the
same chunk would different headers on different allocations, allowing for less
predictability. The issue is that gathering the same chunk header with different
salts can give information about the other "secrets" (cookie, pointer), and that
if an attacker leaks a header, they can reuse it anyway for that same chunk
anyway since we don't enforce the salt value.
So we get rid of the salt in the header. This means we also get rid of the
thread local Prng, and that we don't need a global Prng anymore as well. This
makes everything faster.
We reuse those 8 bits to store the `ClassId` of a chunk now (0 for a secondary
based allocation). This way, we get some additional speed gains:
- `ClassId` is computed outside of the locked block;
- `getActuallyAllocatedSize` doesn't need the `GetSizeClass` call;
- same for `deallocatePrimary`;
We add a sanity check at init for this new field (all sanity checks are moved
in their own function, `init` was getting crowded).
Reviewers: alekseyshl, flowerhack
Reviewed By: alekseyshl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40796
llvm-svn: 319791
This is a small change I split of from a larger one
that simplifies the condition that need to be checked
when decided if we need to emit relocation and all the
things they depend on (symbols, etc).
Differential Revision: https://reviews.llvm.org/D40825
llvm-svn: 319789
__kmpc_reduce_nowait() correctly swapped the teams for reductions
in a teams construct. Apply the same logic to __kmpc_reduce() and
__kmpc_reduce_end().
Differential Revision: https://reviews.llvm.org/D40753
llvm-svn: 319788
Without this when lld failed to replace the output file it would leave
the temporary behind. The problem is that the existing logic is
- cancel the delete flag
- rename
We have to cancel first to avoid renaming and then crashing and
deleting the old version. What is missing then is deleting the
temporary file if the rename fails.
This can be an issue on both unix and windows, but I am not sure how
to cause the rename to fail reliably on unix. I think it can be done
on ZFS since it has an ACL system similar to what windows uses, but
adding support for checking that in llvm-lit is probably not worth it.
llvm-svn: 319786
Summary:
A user of the check opened a bugreport and reported that `std::exchange`
triggers a false positive. I adjusted the doc to include a list of known
(std) constructs that do trigger the issue with templates forgetting the
type alias.
Reviewers: aaron.ballman, alexfh, hokein
Reviewed By: aaron.ballman
Subscribers: klimek, nemanjai, xazax.hun, kbarton, cfe-commits
Differential Revision: https://reviews.llvm.org/D40829
llvm-svn: 319785
Add a new file AArch64ErrataFix.cpp that implements the logic to scan for
the Cortex-A53 Erratum 843419. This involves finding all the executable
code, disassembling the instructions that might trigger the erratum and
reporting a message if the sequence is detected.
At this stage we do not attempt to fix the erratum, this functionality
will be added in a later patch. See D36749 for proposal.
Differential Revision: https://reviews.llvm.org/D36742
llvm-svn: 319780
This patch, together with a matching clang patch (https://reviews.llvm.org/D39719), implements the lowering of X86 kunpack intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D39720
Change-Id: I4088d9428478f9457f6afddc90bd3d66b3daf0a1
llvm-svn: 319778
This patch, together with a matching llvm patch (https://reviews.llvm.org/D39720), implements the lowering of X86 kunpack intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D39719
Change-Id: Id5d3cb394ad33b98be79a6783d1d15569e2b798d
llvm-svn: 319777
If the error is generated during analysis of implicitly or explicitly
mapped variables, it may cause compiler crash because of incorrect
analysis.
llvm-svn: 319774
Search from AND nodes to find whether they can be propagated back to
loads, so that the AND and load can be combined into a narrow load.
We search through OR, XOR and other AND nodes and all bar one of the
leaves are required to be loads or constants. The exception node then
needs to be masked off meaning that the 'and' isn't removed, but the
loads(s) are narrowed still.
Differential Revision: https://reviews.llvm.org/D39604
llvm-svn: 319773
Summary:
Found out, at code inspection, that there was a fault in
DAGCombiner::CombineConsecutiveLoads for big-endian targets.
A BUILD_PAIR is always having the least significant bits of
the composite value in element 0. So when we are doing the checks
for consecutive loads, for big endian targets, we should check
if the load to elt 1 is at the lower address and the load
to elt 0 is at the higher address.
Normally this bug only resulted in missed oppurtunities for
doing the load combine. I guess that in some rare situation it
could lead to faulty combines, but I've not seen that happen.
Note that this patch actually will trigger load combine for
some big endian regression tests.
One example is test/CodeGen/PowerPC/anon_aggr.ll where we now get
t76: i64,ch = load<LD8[FixedStack-9]
instead of
t37: i32,ch = load<LD4[FixedStack-10]>
t35: i32,ch = load<LD4[FixedStack-9]>
t41: i64 = build_pair t37, t35
before legalization. Then the legalization will split the LD8
into two loads, so the end result is the same. That should
verify that the transfomation is correct now.
Reviewers: niravd, hfinkel
Reviewed By: niravd
Subscribers: nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D40444
llvm-svn: 319771