assembly operands."
Earlyclobbers are now excepted from this change (original commit: c78da03).
Review: Ulrich Weigand, Nick Desaulniers
Differential Revision: https://reviews.llvm.org/D87279
The RISC-V implementations of the `__mulsi3`, `__muldi3` builtins were
conditionally compiling the actual function definitions depending on whether
the M extension was present or not. This caused Compiler-RT testing failures
for RISC-V targets with the M extension, as when these sources were included
the `librt_has_mul*i3` features were still being defined. These `librt_has_*`
definitions are used to conditionally run the respective tests. Since the
actual functions were not being compiled-in, the generic test for `__muldi3`
would fail. This patch makes these implementations follow the normal
Compiler-RT convention of always including the definition, and conditionally
running the respective tests by using the lit conditional
`REQUIRES: librt_has_*`.
Since the `mulsi3_test.c` wasn't actually RISC-V-specific, this patch also
moves it out of the `riscv` directory. It now only depends on
`librt_has_mulsi3` to run.
Differential Revision: https://reviews.llvm.org/D86457
Docstrings for `__str__` method in many classes was recycling the constant
string defined for `Type`, without being types themselves. Use proper
docstrings instead. Since they are succint, use string literals instead of
top-level constants to avoid further mistakes.
Differential Revision: https://reviews.llvm.org/D89780
The pybind class typedef for concrete attribute classes was erroneously
deriving all of them from PyAttribute instead of the provided base class. This
has not been triggering any error because only one level of the hierarchy is
currently exposed.
Differential Revision: https://reviews.llvm.org/D89779
Values are ubiquitous in the IR, in particular block argument and operation
results are Values. Define Python classes for BlockArgument, OpResult and their
common ancestor Value. Define pseudo-container classes for lists of block
arguments and operation results, and use these containers to access the
corresponding values in blocks and operations.
Differential Revision: https://reviews.llvm.org/D89778
We were previously relying upon the TypeSize comparison operators to
obtain the maximum size of two types, however use of such operators is
being deprecated in favour of making the caller aware that it could
be dealing with scalable vector types. I have changed the code to assert
that the two types have the same scalable property and thus we can
simply take the maximum of the known minimum sizes instead.
Differential Revision: https://reviews.llvm.org/D88563
The EXPECT_XY comparison functions all rely upon using the existing
TypeSize comparison operators, which we are deprecating in favour
of isKnownXY. I've changed all such cases to compare either the known
minimum size or the fixed size.
Differential Revision: https://reviews.llvm.org/D89531
Split the resolution check to a separate test, which is marked as
unsupported on windows.
On windows (both with MS STL and libstdc++), the file time has
100 ns resolution; the standard doesn't mandate a specific resolution.
Differential Revision: https://reviews.llvm.org/D89535
When we need to prove implication of expressions of different type width,
the default strategy is to widen everything to wider type and prove in this
type. This does not interact well with AddRecs with negative steps and
unsigned predicates: such AddRec will likely not have a `nuw` flag, and its
`zext` to wider type will not be an AddRec. In contraty, `trunc` of an AddRec
in some cases can easily be proved to be an `AddRec` too.
This patch introduces an alternative way to handling implications of different
type widths. If we can prove that wider type values actually fit in the narrow type,
we truncate them and prove the implication in narrow type.
Differential Revision: https://reviews.llvm.org/D89548
Reviewed By: fhahn
This reverts commit a10a64e7e3.
It broke polly/test/ScopInfo/NonAffine/non-affine-loop-condition-dependent-access_3.ll
The difference suggests that this may be a serious issue.
It appears for Swift there was confusing errors when trying to parse APINotes, when libAPINotes and libInterfaceStub are linked, they both export symbol
`__ZN4llvm4yaml7yamlizeINS_12VersionTupleEEENSt3__19enable_ifIXsr16has_ScalarTraitsIT_EE5valueEvE4typeERNS0_2IOERS5_bRNS0_12EmptyContextE`, and discovered
same symbol defined within llvm-ifs.
This consolidates the boilerplate into YAMLTraits and defers the specific validation in reading the whole input.
fixes: rdar://problem/70450563
Reviewed By: phosek, dblaikie
Differential Revision: https://reviews.llvm.org/D89764
When processing declarations in resolve-names.cpp, we were returning a
symbol that had SubprogramName details to PushSubprogramScope(), which
expects a symbol with Subprogram details.
I adjusted the code and added a test.
Differential Revision: https://reviews.llvm.org/D89829
This changes `ContentCache::Buffer` to use
`std::unique_ptr<MemoryBuffer>` instead of the `PointerIntPair`. It
drops the (mostly unused) `DoNotFree` bit, instead creating a (new)
non-owning `MemoryBuffer` instance when passed a `MemoryBufferRef`.
Differential Revision: https://reviews.llvm.org/D67030
Comparing 32-bit `ptrdiff_t` against 32-bit `unsigned` results in
`-Wsign-compare` warnings for both GCC and Clang.
The warning for the cases in question appear to identify an issue
where the `ptrdiff_t` value would be mutated via conversion to an
unsigned type.
The warning is resolved by using the usual arithmetic conversions to
safely preserve the value of the `unsigned` operand while trying to
convert to a signed type. Host platforms where `unsigned` has the same
width as `unsigned long long` will need to make a different change, but
using an explicit cast has disadvantages that can be avoided for now.
Reviewed By: dantrushin
Differential Revision: https://reviews.llvm.org/D89612
when instantiating the enclosing class.
We'll build new lambda closure types if and when we instantiate the
default member initializer, and instantiating the closure type by itself
can go wrong in cases where we fully-instantiate nested classes (in
explicit instantiations of the enclosing class and when the enclosing
class is a local class) -- we will instantiate the 'operator()' as a
regular function rather than as a lambda call operator, so it doesn't
get to use its captures, has the wrong 'this' type, etc.
Passes that are run after the post-RA scheduler may insert instructions like
waitcnt which eliminate the need for certain noops. After this patch the
scheduler is still aware of possible latency from hazards but noops will
not be inserted until the dedicated hazard recognizer pass is run.
Depends on D89753.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D89754
If a target can encode multiple wait-states into a noop allow emitting such
instructions directly.
Reviewed By: rampitec, dmgreen
Differential Revision: https://reviews.llvm.org/D89753
Permitting non-standards-driven "do the best you can" constant-folding
of array bounds is permitted solely as a GNU compatibility feature. We
should not be doing it in any language mode that is attempting to be
conforming.
From https://reviews.llvm.org/D20090 it appears the intent here was to
permit `__constant int` globals to be used in array bounds, but the
change in that patch only added half of the functionality necessary to
support that in the constant evaluator. This patch adds the other half
of the functionality and turns off constant folding for array bounds in
OpenCL.
I couldn't find any spec justification for accepting the kinds of cases
that D20090 accepts, so a reference to where in the OpenCL specification
this is permitted would be useful.
Note that this change also affects the code generation in one test:
because after 'const int n = 0' we now treat 'n' as a constant
expression with value 0, it's now a null pointer, so '(local int *)n'
forms a null pointer rather than a zero pointer.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D89520
With -fbasicblock-sections=, let the front-end handle the case where the file
doesnt exist. The driver only checks if the option syntax is right.
Differential Revision: https://reviews.llvm.org/D89500
Move a flag out of the `MemoryBuffer*` to unblock changing it to a
`unique_ptr`. There are plenty of bits available in the bitfield below.
Differential Revision: https://reviews.llvm.org/D89431
Recursively traversing the operand tree leads to an exponential blowup
if instructions are used multiple times due to every path leading to an
additional copy of the instructions after forwarding. This problem was
marked as a TODO in the code and was reported as a bug in llvm.org/PR47340.
Fix by caching already visited instructions and returning the cached
version when already visited. Instead of calling forwardTree() twice,
return a ForwardingAction structure that contains a lambda which will
carry-out the forwarding when requested. The lambdas are executed in
reverse-postorder to mimic the previous recursive calls unless there
is a reuse.
Fixes llvm.org/PR47340
Few changes wrt utilities:
- split `Check` into a platform agnostic condition test and a platform
specific termination, for which we introduce the function `die`.
- add a platform agnostic `utilities.cpp` that gets the allocation
alignment functions original in the platform specific file, as they
are reusable by all platforms.
Differential Revision: https://reviews.llvm.org/D89811
Change waitcnt insertion to check the memory operand tokens to see if
flat memory operations access VMEM in the same way it does to check if
accessing LDS. This avoids adding waitcnt for counters for address
spaces that are not accessed.
In addition, only generate the pessimistic waitcnt 0 if a flat memory
operation appears to access both VMEM and LDS.
This benefits flat memory operations that explicitly specify the
address space as GLOBAL or LOCAL.
Differential Revision: https://reviews.llvm.org/D89618
Inline `Source::getBufferPointer` into its only remaining caller,
`getBufferOrNone`. No functionality change.
Differential Revision: https://reviews.llvm.org/D89430
This patch teaches BasicBlock::print to construct an instance of
SlotTracker with the containing function.
Without this patch, we dump:
*** IR Dump After LoopInstSimplifyPass ***
; Preheader:
br label %1
; Loop:
<badref>: ; preds = %1, %0
br label %1
Note "<badref>" above. This happens because BasicBlock::print calls:
SlotTracker SlotTable(this->getModule());
Note that this constructor does not add the contents of functions to
the slot table. That is, basic blocks are left unnumbered.
This patch fixes the problem by switching to:
SlotTracker SlotTable(this->getParent());
which does add the contents of the Module and the function,
this->getParent(), to the slot table.
Differential Revision: https://reviews.llvm.org/D89567
getVectorPtrTy is private to VectorBlockGenerator, and all uses query
the address space from the passed-in pointer prior to calling it.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D89745
Nullability annotations are implmented using attributes; previusly
clangd would skip over AttributedTypeLoc since their location
points to the attribute instead of the modified type.
Also add some test cases for this.
Differential Revision: https://reviews.llvm.org/D89579