Vectors were being manually scalarized by the backend. Instead,
let the target-independent code do all of the work. The manual
scalarization was from a time before good target-independent support
for scalarization in LLVM. However, this forces us to specially-handle
vector loads and stores, which we can turn into PTX instructions that
produce/consume multiple operands.
llvm-svn: 174968
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
Each SM and PTX version is modeled as a subtarget feature/CPU. Additionally,
PTX 3.1 is added as the default PTX version to be out-of-the-box compatible
with CUDA 5.0.
Available CPUs for this target:
sm_10 - Select the sm_10 processor.
sm_11 - Select the sm_11 processor.
sm_12 - Select the sm_12 processor.
sm_13 - Select the sm_13 processor.
sm_20 - Select the sm_20 processor.
sm_21 - Select the sm_21 processor.
sm_30 - Select the sm_30 processor.
sm_35 - Select the sm_35 processor.
Available features for this target:
ptx30 - Use PTX version 3.0.
ptx31 - Use PTX version 3.1.
sm_10 - Target SM 1.0.
sm_11 - Target SM 1.1.
sm_12 - Target SM 1.2.
sm_13 - Target SM 1.3.
sm_20 - Target SM 2.0.
sm_21 - Target SM 2.1.
sm_30 - Target SM 3.0.
sm_35 - Target SM 3.5.
llvm-svn: 167699
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
llvm-svn: 156196