Add an assertion that a valid section is referenced. The potential NULL pointer
dereference was identified by the clang static analyzer.
llvm-svn: 204114
This allows us to catch more opportunities for ODR-based type uniquing
during LTO.
Paired commit with CFE which updates some testcases to verify the new
DIBuilder behavior.
llvm-svn: 204106
This removes an attribute (and more importantly, a relocation) from
skeleton type units and removes some unnecessary file names from the
debug_line section that remains in the .o (and linked executable) file.
There's still a few places we could shave off some more space here:
* use compilation dir of the underlying compilation unit (since all the
type units share that compilation dir - though this would be more
complicated in LTO cases where they don't (keep a map of compilation
dir->line table header?))
* Remove some of the unnecessary header fields from the line table since
they're not needed in this situation (about 12 bytes per table).
llvm-svn: 204099
When emitting assembly there's no support for emitting separate line
tables for each compilation unit - so LLVM emits .loc directives
producing a single line table.
Line tables have an implicit directory (index 0) equal to the
compilation directory (DW_AT_comp_dir) of the compilation unit that
references them.
If multiple compilation units (with possibly disparate compilation
directories) reference the same line table, we must avoid relying on
this ambiguous directory.
Achieve this my simply not setting the compilation directory on the line
table when we're in this situation (multiple units while emitting
assembly).
llvm-svn: 204094
We still do a few lookups into the line table mapping in MCContext that
could be factored out into a single lookup (rather than looking it up
once for the table label, once to set the compilation unit, once for
each time we need a file ID, etc... ) but assembly output complicates
that somewhat as we still need a virtual dispatch back to the
MCAsmStreamer in that case.
llvm-svn: 204092
Our handling of compilation directory in DwarfDebug was broken
(incorrectly using the 'last' compilation directory (that of the last
CU in the metadata list) for all function emission in any CU). By moving
this handling down into MCDwarf the issue is fixed as the compilation
dir is tracked correctly per line table.
llvm-svn: 204089
When GlobalOpt has determined that a GlobalVariable only ever has two values,
it would convert the GlobalVariable to a boolean, and introduce SelectInsts
at every load, to choose between the two possible values. These SelectInsts
introduce overhead and other unpleasantness.
This patch makes GlobalOpt just add range metadata to loads from such
GlobalVariables instead. This enables the same main optimization (as seen in
test/Transforms/GlobalOpt/integer-bool.ll), without introducing selects.
The main downside is that it doesn't get the memory savings of shrinking such
GlobalVariables, but this is expected to be negligible.
llvm-svn: 204076
See r204027 for the precursor to this that applied to asm debug info.
This required some non-obvious API changes to handle the case of asm
output (we never go asm->asm so this didn't come up in r204027): the
modification of the file/directory name by MCDwarfLineTableHeader needed
to be reflected in the MCAsmStreamer caller so it could print the
appropriate .file directive, so those StringRef parameters are now
non-const ref (in/out) parameters rather than just const.
llvm-svn: 204069
It is unclear how it would be possible to get M to be NULL in normal scenarios.
Change this to an assert rather than a runtime check as per dblakie's
suggestion.
llvm-svn: 204060
This performs the equivalent of a .set directive in that it creates a symbol
which is an alias for another symbol or value which may possibly be yet
undefined. This directive also has the added property in that it marks the
aliased symbol as being a thumb function entry point, in the same way that the
.thumb_func directive does.
The current implementation fails one test due to an unrelated issue. Functions
within .thumb sections are not marked as thumb_func. The result is that
the aliasee function is not valued correctly.
llvm-svn: 204059
Rather than LegalizeAction::Expand, this needs LegalizeAction::Promote to get
promoted to fp_to_sint v8f32->v8i32. This is a legal operation on AVX.
For that to work properly, we also need to teach the legalizer about the
specific promotion required here. The default vector promotion uses
bitcasting to a vector type of the same total size. We want to promote the
vector element type, effectively widening the operation and then truncating
the result. This is analogous to the current logic of how int_to_fp is
promoted.
The change also factors out some code from the int_to_fp promotion code to
ValueType::widenIntegerVectorElementType. This is now shared between
int_to_fp and fp_to_int.
There is no longer need for the custom lowering of fp_to_sint f32->v8i16 in
X86. It can now go through the new target-independent fp_to_*int promotion
logic.
I also checked that no other target uses Promote for these ops yet, so there
shouldn't be any unexpected change in behavior.
Fixes <rdar://problem/16202247>
llvm-svn: 204058
The type of the immediates should not matter as long as the encoding is
equivalent to the encoding of one of the legal inline constants.
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 204056
This instructions writes to an 32-bit SGPR. This change required adding
the 32-bit VCC_LO and VCC_HI registers, because the full VCC register
is 64 bits.
This fixes verifier errors on several of the indirect addressing piglit
tests.
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 204055
The "noduplicate" attribute of call instructions is sometimes queried directly
and sometimes through the cannotDuplicate() predicate. This patch streamlines
all queries to use the cannotDuplicate() predicate. It also adds this predicate
to InvokeInst, to mirror what CallInst has.
llvm-svn: 204049
This is really a consistency fix. Since given
a = b
we propagate the information, we should propagate it too given
a = b + (1 - 1)
Fixes pr19145.
llvm-svn: 204028
The previous deduping strategy was woefully inadequate - it only
considered the most recent file used and avoided emitting a duplicate in
that case - never considering the a/b/a scenario.
It was also lacking when it came to directory paths as the previous
filename would never match the current if the filename had been split
into file and directory components.
This change builds caching functionality into the line table at the
lowest level in an optional form (a file number of 0 indicates that one
should be chosen and returned) and will eventually be reused by the
normal source level debugging DWARF emission.
llvm-svn: 204027
- Adds support for inserting vzerouppers before tail-calls.
This is enabled implicitly by having MachineInstr::copyImplicitOps preserve
regmask operands, which allows VZeroUpperInserter to see where tail-calls use
vector registers.
- Fixes a bug that caused the previous version of this optimization to miss some
vzeroupper insertion points in loops. (Loops-with-vector-code that followed
loops-without-vector-code were mistakenly overlooked by the previous version).
- New algorithm never revisits instructions.
Fixes <rdar://problem/16228798>
llvm-svn: 204021
Utilize the previous move of MVT to a separate header for all trivial
cases (that don't need any further restructuring).
Reviewed By: Tim Northover
llvm-svn: 204003
Since our error_category is based on the std one, we should have the
same visibility for the constructor. This also allows us to avoid
using the _do_message implementation detail in our own categories.
llvm-svn: 203998
based on the ODR.
This adds an OdrMemberMap to DwarfDebug which is used to unique C++
member function declarations based on the unique identifier of their
containing class and their mangled name.
We can't use the usual DIRef mechanism here because DIScopes are indexed
using their entire MDNode, including decl_file and decl_line, which need
not be unique (see testcase).
Prior to this change multiple redundant member function declarations would
end up in the same uniqued DW_TAG_class_type.
llvm-svn: 203982
For better or worse, this is currently the normal error reporting path
when dealing with backend errors from inline assembly. It's not just
internal compiler issues that come through here, so we shouldn't be
creating a backtrace on this path.
rdar://16329947
llvm-svn: 203979
Summary:
The sample profiler pass emits several error messages. Instead of
just aborting the compiler with report_fatal_error, we can emit
better messages using DiagnosticInfo.
This adds a new sub-class of DiagnosticInfo to handle the sample
profiler.
Reviewers: chandlerc, qcolombet
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3086
llvm-svn: 203976
any lexical scopes then go ahead and turn on DW_AT_ranges for the
compile unit since we would be claiming to describe in the CU
a range for which we don't have information in the CU otherwise.
llvm-svn: 203969
This change brings getCallPreservedMask()'s logic in line with
getCalleeSavedRegs().
While this changes the control flow slightly, the change is not
currently observable. is64Bit must be false to get to the accidental
fallthrough, but the case that we fall into (coldcc) does nothing unless
is64Bit is true.
llvm-svn: 203943
Commit r181723 introduced code to avoid placing initialized variables
needing relocations into the .rodata section, which avoid copy relocs
that do not work as expected on ppc64 function references.
The same treatment is also needed for *named* .rodata.XXX sections.
This patch changes PPC64LinuxTargetObjectFile::SelectSectionForGlobal
to modify "Kind" *before* calling the default SelectSectionForGlobal
routine, instead of first calling the default routine and then just
checking for the (main) .rodata section afterwards.
llvm-svn: 203921
issue in that the new MachineRegisterInfo bundle iterators didn't
dereference to the START of the bundle, while the old skipBundle()
method did.
llvm-svn: 203890
These linkages were introduced some time ago, but it was never very
clear what exactly their semantics were or what they should be used
for. Some investigation found these uses:
* utf-16 strings in clang.
* non-unnamed_addr strings produced by the sanitizers.
It turns out they were just working around a more fundamental problem.
For some sections a MachO linker needs a symbol in order to split the
section into atoms, and llvm had no idea that was the case. I fixed
that in r201700 and it is now safe to use the private linkage. When
the object ends up in a section that requires symbols, llvm will use a
'l' prefix instead of a 'L' prefix and things just work.
With that, these linkages were already dead, but there was a potential
future user in the objc metadata information. I am still looking at
CGObjcMac.cpp, but at this point I am convinced that linker_private
and linker_private_weak are not what they need.
The objc uses are currently split in
* Regular symbols (no '\01' prefix). LLVM already directly provides
whatever semantics they need.
* Uses of a private name (start with "\01L" or "\01l") and private
linkage. We can drop the "\01L" and "\01l" prefixes as soon as llvm
agrees with clang on L being ok or not for a given section. I have two
patches in code review for this.
* Uses of private name and weak linkage.
The last case is the one that one could think would fit one of these
linkages. That is not the case. The semantics are
* the linker will merge these symbol by *name*.
* the linker will hide them in the final DSO.
Given that the merging is done by name, any of the private (or
internal) linkages would be a bad match. They allow llvm to rename the
symbols, and that is really not what we want. From the llvm point of
view, these objects should really be (linkonce|weak)(_odr)?.
For now, just keeping the "\01l" prefix is probably the best for these
symbols. If we one day want to have a more direct support in llvm,
IMHO what we should add is not a linkage, it is just a hidden_symbol
attribute. It would be applicable to multiple linkages. For example,
on weak it would produce the current behavior we have for objc
metadata. On internal, it would be equivalent to private (and we
should then remove private).
llvm-svn: 203866
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
llvm-svn: 203865
There aren't /that/ many files, and we are already using various maps
and other standard containers that don't use MCContext's allocator to
store these values, so this doesn't seem to be critical and simplifies
the design (I'll be moving construction out of MCContext shortly so it'd
be annoying to have to pass the allocator around to allocate these
things... and we'll have non-MCContext users (debug_line.dwo) shortly)
llvm-svn: 203831
This patch fixes the bug in peephole optimization that folds a load which defines one vreg into the one and only use of that vreg. With debug info, a DBG_VALUE that referenced the vreg considered to be a use, preventing the optimization. The fix is to ignore DBG_VALUE's during the optimization, and undef a DBG_VALUE that references a vreg that gets removed.
Patch by Trevor Smigiel!
llvm-svn: 203829
This changes the implementation of local directional labels to use a dedicated
map. With that it can then just use CreateTempSymbol, which is what the rest
of MC uses.
CreateTempSymbol doesn't do a great job at making sure the names are unique
(or being efficient when the names are not needed), but that should probably
be fixed in a followup patch.
This fixes pr18928.
llvm-svn: 203826
This replaces several "compile unit ID -> thing" mappings in favor of
one mapping from CUID to the whole line table structure (files,
directories, and lines).
This is another step along the way to refactoring out reusable
components of line table handling for use when generating debug_line.dwo
for fission type units.
Also, might be a good basis to fold some of this handling down into
MCStreamers to avoid the special case of "One line table when doing asm
printing, line table per CU otherwise" by building it into the different
MCStreamer implementations.
llvm-svn: 203821
LDS instructions are pseudo instructions which model
the OQAP defs and uses within a single instruction.
This fixes a hang in the opencv MedianFilter tests.
llvm-svn: 203818
This is a follow-up to r203635. Saleem pointed out that since symbolic register
names are much easier to read, it would be good if we could turn them off only
when we really need to because we're using an external assembler.
Differential Revision: http://llvm-reviews.chandlerc.com/D3056
llvm-svn: 203806
Summary:
This adds ObjectFile::section_iterator_range, that allows to write
range-based for-loops running over all sections of a given file.
Several files from lib/ are converted to the new interface. Similar fixes
should be applied to a variety of llvm-* tools.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3069
llvm-svn: 203799
Summary:
This helps the instruction selector to lower an i64 * i64 -> i128
multiplication into a single instruction on targets which support it.
This is an update of D2973 which was reverted because of a bug reported
as PR19084.
Reviewers: t.p.northover, chapuni
Reviewed By: t.p.northover
CC: llvm-commits, alex, chapuni
Differential Revision: http://llvm-reviews.chandlerc.com/D3021
llvm-svn: 203797
O(N*log(N)). The idea is to introduce total ordering among functions set.
That allows to build binary tree and perform function look-up procedure in O(log(N)) time.
This patch description:
Introduced total ordering among Type instances. Actually it is improvement for existing
isEquivalentType.
0. Coerce pointer of 0 address space to integer.
1. If left and right types are equal (the same Type* value), return 0 (means equal).
2. If types are of different kind (different type IDs). Return result of type IDs
comparison, treating them as numbers.
3. If types are vectors or integers, return result of its
pointers comparison (casted to numbers).
4. Check whether type ID belongs to the next group:
* Void
* Float
* Double
* X86_FP80
* FP128
* PPC_FP128
* Label
* Metadata
If so, return 0.
5. If left and right are pointers, return result of address space
comparison (numbers comparison).
6. If types are complex.
Then both LEFT and RIGHT will be expanded and their element types will be checked with
the same way. If we get Res != 0 on some stage, return it. Otherwise return 0.
7. For all other cases put llvm_unreachable.
llvm-svn: 203788
convenient it is to imagine a world where this works, that is not C++ as
was pointed out in review. The standard even goes to some lengths to
preclude any attempt at this, for better or worse. Maybe better. =]
llvm-svn: 203775
Only one instruction pair needed changing: SMULH & UMULH. The previous
code worked, but MC was doing extra work treating Ra as a valid
operand (which then got completely overwritten in MCCodeEmitter).
No behaviour change, so no tests.
llvm-svn: 203772
VSX is an ISA extension supported on the POWER7 and later cores that enhances
floating-point vector and scalar capabilities. Among other things, this adds
<2 x double> support and generally helps to reduce register pressure.
The interesting part of this ISA feature is the register configuration: there
are 64 new 128-bit vector registers, the 32 of which are super-registers of the
existing 32 scalar floating-point registers, and the second 32 of which overlap
with the 32 Altivec vector registers. This makes things like vector insertion
and extraction tricky: this can be free but only if we force a restriction to
the right register subclass when needed. A new "minipass" PPCVSXCopy takes care
of this (although it could do a more-optimal job of it; see the comment about
unnecessary copies below).
Please note that, currently, VSX is not enabled by default when targeting
anything because it is not yet ready for that. The assembler and disassembler
are fully implemented and tested. However:
- CodeGen support causes miscompiles; test-suite runtime failures:
MultiSource/Benchmarks/FreeBench/distray/distray
MultiSource/Benchmarks/McCat/08-main/main
MultiSource/Benchmarks/Olden/voronoi/voronoi
MultiSource/Benchmarks/mafft/pairlocalalign
MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4
SingleSource/Benchmarks/CoyoteBench/almabench
SingleSource/Benchmarks/Misc/matmul_f64_4x4
- The lowering currently falls back to using Altivec instructions far more
than it should. Worse, there are some things that are scalarized through the
stack that shouldn't be.
- A lot of unnecessary copies make it past the optimizers, and this needs to
be fixed.
- Many more regression tests are needed.
Normally, I'd fix these things prior to committing, but there are some
students and other contributors who would like to work this, and so it makes
sense to move this development process upstream where it can be subject to the
regular code-review procedures.
llvm-svn: 203768
There are currently two schemes for mapping instruction operands to
instruction-format variables for generating the instruction encoders and
decoders for the assembler and disassembler respectively: a) to map by name and
b) to map by position.
In the long run, we'd like to remove the position-based scheme and use only
name-based mapping. Unfortunately, the name-based scheme currently cannot deal
with complex operands (those with suboperands), and so we currently must use
the position-based scheme for those. On the other hand, the position-based
scheme cannot deal with (register) variables that are split into multiple
ranges. An upcoming commit to the PowerPC backend (adding VSX support) will
require this capability. While we could teach the position-based scheme to
handle that, since we'd like to move away from the position-based mapping
generally, it seems silly to teach it new tricks now. What makes more sense is
to allow for partial transitioning: use the name-based mapping when possible,
and only use the position-based scheme when necessary.
Now the problem is that mixing the two sensibly was not possible: the
position-based mapping would map based on position, but would not skip those
variables that were mapped by name. Instead, the two sets of assignments would
overlap. However, I cannot currently change the current behavior, because there
are some backends that rely on it [I think mistakenly, but I'll send a message
to llvmdev about that]. So I've added a new TableGen bit variable:
noNamedPositionallyEncodedOperands, that can be used to cause the
position-based mapping to skip variables mapped by name.
llvm-svn: 203767
Support to the IAS was added to actually parse and handle the complex SO
expressions. However, the object file lowering was not updated to compensate
for the fact that the shift operand may be an absolute expression.
When trying to assemble to an object file, the lowering would fail while
succeeding when emitting purely assembly. Add an appropriate test.
The test case is inspired by the test case provided by Jiangning Liu who also
brought the issue to light.
llvm-svn: 203762
for use with C++11 range-based for-loops.
The gist of phase 1 is to remove the skipInstruction() and skipBundle()
methods from these iterators, instead splitting each iterator into a version
that walks operands, a version that walks instructions, and a version that
walks bundles. This has the result of making some "clever" loops in lib/CodeGen
more verbose, but also makes their iterator invalidation characteristics much
more obvious to the casual reader. (Making them concise again in the future is a
good motivating case for a pre-incrementing range adapter!)
Phase 2 of this undertaking with consist of removing the getOperand() method,
and changing operator*() of the operand-walker to return a MachineOperand&. At
that point, it should be possible to add range views for them that work as one
might expect.
llvm-svn: 203757