building.
https://reviews.llvm.org/D45067
This change attempts to do two things:
1) It separates out the state that is stored in the
MachineIRBuilder(InsertionPt, MF, MRI, InsertFunction etc) into a
separate object called MachineIRBuilderState.
2) Add the ability to constant fold operations while building instructions
(optionally). MachineIRBuilder is now refactored into a MachineIRBuilderBase
which contains lots of non foldable build methods and their implementation.
Instructions which can be constant folded/transformed are now in a class
called FoldableInstructionBuilder which uses CRTP to use the implementation
of the derived class for buildBinaryOps. Additionally buildInstr in the derived
class can be used to implement other kinds of transformations.
Also because of separation of state, given a MachineIRBuilder in an API,
if one wishes to use another MachineIRBuilder, a new one can be
constructed from the state locally. For eg,
void doFoo(MachineIRBuilder &B) {
MyCustomBuilder CustomB(B.getState());
// Use CustomB for building.
}
reviewed by : aemerson
llvm-svn: 329596
Previously MapVector assumed `Map::mapped_type` was `unsigned`.
This caused problems when using MapVector with a user-specified
map where this didn't hold (For example StringMap<unsigned>).
This patch adjusts MapVector to use the same type as the underlying
map, avoiding reference binding errors in functions like `insert`.
llvm-svn: 329523
Summary:
D44883 extends -Wself-assign to also work on C++ classes.
In it's current state (as suggested by @rjmccall), it is not under it's own sub-group.
Since that diag is enabled by `-Wall`, stage2 testing showed that:
* It does not fire on any llvm code
* It does fire for these 3 unittests
* It does fire for libc++ tests
This diff simply silences those new warnings in llvm's unittests.
A similar diff will be needed for libcxx. (`libcxx/test/std/language.support/support.types/byteops/`, maybe something else)
Since i don't think we want to repeat rL322901, let's talk about it.
I've subscribed everyone who i think might be interested...
There are several ways forward:
* Not extend -Wself-assign, close D44883. Not very productive outcome i'd say.
* Keep D44883 in it's current state.
Unless your custom overloaded operators do something unusual for when self-assigning,
the warning is no less of a false-positive than the current -Wself-assign.
Except for tests of course, there you'd want to silence it. The current suggestion is:
```
S a;
a = (S &)a;
```
* Split the diagnostic in two - `-Wself-assign-builtin` (i.e. what is `-Wself-assign` in trunk),
and `-Wself-assign-overloaded` - the new part in D44883.
Since, as i said, i'm not really sure why it would be less of a error than the current `-Wself-assign`,
both would still be in `-Wall`. That way one could simply pass `-Wno-self-assign-overloaded` for all the tests.
Pretty simple to do, and will surely work.
* Split the diagnostic in two - `-Wself-assign-trivial`, and `-Wself-assign-nontrivial`.
The choice of which diag to emit would depend on trivial-ness of that particular operator.
The current `-Wself-assign` would be `-Wself-assign-trivial`.
https://godbolt.org/g/gwDASe - `A`, `B` and `C` case would be treated as trivial, and `D`, `E` and `F` as non-trivial.
Will be the most complicated to implement.
Thoughts?
Reviewers: aaron.ballman, rsmith, rtrieu, rjmccall, dblaikie, atrick, gottesmm
Reviewed By: dblaikie
Subscribers: lebedev.ri, phosek, vsk, rnk, thakis, sammccall, mclow.lists, llvm-commits, rjmccall
Differential Revision: https://reviews.llvm.org/D45082
llvm-svn: 329491
r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to
llvm::sort. Refer the comments section in D44363 for a list of all the
required patches.
llvm-svn: 329475
Summary:
The LLVM SourceMgr class (which is used indirectly by Swift, though not Clang)
has a routine for looking up line numbers of SMLocs. This routine uses a
shared, special-purpose cache that handles exactly one access pattern
efficiently: looking up the line number of an SMLoc that points into the same
buffer as the last query made to the SourceMgr, at a location in the buffer at
or ahead of the last query.
When this works it's fine, but when it fails it's catastrophic for performancer:
one recent out-of-order access from a Swift utility routine ran for tens of
seconds, spending 99% of its time repeatedly scanning buffers for '\n'.
This change removes the shared cache from the SourceMgr and installs a new
cache in each SrcBuffer. The per-SrcBuffer caches are also "full", in the sense
that rather than caching a single last-query pointer, they cache _all_ the
line-ending offsets, in a binary-searchable array, such that once it's
populated (on first access), all subsequent access patterns run at the same
speed.
Performance measurements I've done show this is actually a little bit faster on
real codebases (though only a couple fractions of a percent). Memory usage is
up by a few tens to hundreds of bytes per SrcBuffer that has a line lookup done
on it; I've attempted to minimize this by using dynamic selection of integer
sized when storing offset arrays. But the main motive here is to
make-impossible the cases we don't always see, that show up by surprise when
there is an out-of-order access pattern.
Reviewers: jordan_rose
Reviewed By: jordan_rose
Subscribers: probinson, llvm-commits
Differential Revision: https://reviews.llvm.org/D45003
llvm-svn: 329470
Summary:
Previous code hangs indefinitely when trying to iterate through a
symbol link file that points to an non-exist directory. This change
fixes the bug to make the addCollectedPath function exit ealier and
print out correct warning messages.
Patch by Yuke Liao (@liaoyuke).
Reviewers: Dor1s, vsk
Reviewed By: vsk
Subscribers: bruno, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D44960
llvm-svn: 329338
When llvm is a part of another project (i.e. opencl),
CMAKE_SOURCE_DIR and CMAKE_BINARY_DIR are pointing to
the parent project, which lead to build failures.
Differential Revision: https://reviews.llvm.org/D45328
llvm-svn: 329325
Summary:
The existing Failed() matcher only allowed asserting that the operation
failed, but it was not possible to verify any details of the returned
error.
This patch adds two new matchers, which make this possible:
- Failed<InfoT>() verifies that the operation failed with a single error
of a given type.
- Failed<InfoT>(M) additionally check that the contained error info
object is matched by the nested matcher M.
To make these work, I've changed the implementation of the ErrorHolder
class. Now, instead of just storing the string representation of the
Error, it fetches the ErrorInfo objects and stores then as a list of
shared pointers. This way, ErrorHolder remains copyable, while still
retaining the full information contained in the Error object.
In case the Error object contains two or more errors, the new matchers
will fail to match, instead of trying to match all (or any) of the
individual ErrorInfo objects. This seemed to be the most sensible
behavior for when one wants to match exact error details, but I could be
convinced otherwise...
Reviewers: zturner, lhames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44925
llvm-svn: 329288
Summary:
Add a new plugin API. This closes the gap between pass registration and out-of-tree passes for the new PassManager.
Unlike with the existing API, interaction with a plugin is always
initiated from the tools perspective. I.e., when a plugin is loaded, it
resolves and calls a well-known symbol `llvmGetPassPluginInfo` to obtain
details about the plugin. The fundamental motivation is to get rid of as
many global constructors as possible. The API exposed by the plugin
info is kept intentionally minimal.
Reviewers: chandlerc
Reviewed By: chandlerc
Subscribers: bollu, grosser, lksbhm, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D35258
llvm-svn: 329273
This patch introduces a way to set custom OptPassGate instances to LLVMContext.
A new instance field OptBisector and a new method setOptBisect() are added
to the LLVMContext classes. These changes allow to set a custom OptBisect class
that can make its own decisions on skipping optional passes.
Another important feature of this change is ability to set different instances
of OptPassGate to different LLVMContexts. So the different contexts can be used
independently in several compiling threads of one process.
One unit test is added.
Patch by Yevgeny Rouban.
Reviewers: andrew.w.kaylor, fedor.sergeev, vsk, dberlin, Eugene.Zelenko, reames, skatkov
Reviewed By: andrew.w.kaylor, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D44464
llvm-svn: 329267
Summary:
Clang's __builtin_operator_new/delete was recently taught about the aligned allocation overloads (r328134). This patch makes LLVM aware of them as well.
This allows the compiler to perform certain optimizations including eliding new/delete calls.
Reviewers: rsmith, majnemer, dblaikie, vsk, bkramer
Reviewed By: bkramer
Subscribers: ckennelly, llvm-commits
Differential Revision: https://reviews.llvm.org/D44769
llvm-svn: 329218
These are failing on clang-ppc64le-linux-lnt, though the subdirectory is
not even supposed to be built in CMakeLists. Disable the tests until we
understand what's going on.
llvm-svn: 329200
Summary:
[llvm-exegesis][RFC] Automatic Measurement of Instruction Latency/Uops
This is the code corresponding to the RFC "llvm-exegesis Automatic Measurement of Instruction Latency/Uops".
The RFC is available on the LLVM mailing lists as well as the following document
for easier reading:
https://docs.google.com/document/d/1QidaJMJUyQdRrFKD66vE1_N55whe0coQ3h1GpFzz27M/edit?usp=sharing
Subscribers: mgorny, gchatelet, orwant, llvm-commits
Differential Revision: https://reviews.llvm.org/D44519
llvm-svn: 329156
There are two FPMs in an MSF file, the idea being that for
incremental updates you can write to the alternate one and then
atomically swap them on commit. LLVM defaulted to using FPM1
on the first commit, but this differs from Microsoft's behavior
which is to default to using FPM2 on the first commit. To
eliminate some byte-level file differences, this patch changes
LLVM's default to also be FPM2.
Additionally, LLVM was trying to be "smart" about marking FPM
pages allocated. In addition to marking every page belonging
to the alternate FPM as unallocated, LLVM also marked pages at
the end of the main FPM which were not needed as unallocated.
In order to match the behavior of Microsoft-generated PDBs, we
now always mark every FPM block as allocated, regardless of
whether it is in the main FPM or the alt FPM, and regardless of
whether or not it describes blocks which are actually in the file.
This has the side benefit of simplifying our code.
llvm-svn: 328812
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
Summary:
There aren't any matchers for the three vector operations: insertelement, extractelement, and
shufflevector. This patch adds them as well as corresponding unit tests.
llvm-svn: 328709
Previously this crashed because a nullptr (returned by
createLocalIndirectStubsManagerBuilder() on platforms without
indirection support) functor was unconditionally invoked.
Patch by Andres Freund. Thanks Andres!
llvm-svn: 328687
The existing YAML Output::scalarString code path includes a partial and
incorrect implementation of YAML escaping logic. In particular, the logic put
in place in rL321283 escapes non-printable bytes only if they are not part of a
multibyte UTF8 sequence; implicitly this means that all multibyte UTF8
sequences -- printable and non -- are passed through verbatim.
The simplest solution to this is to direct the Output::scalarString method to
use the standalone yaml::escape function, and this _almost_ works, except that
the existing code in that function _over_ escapes: any multibyte UTF8 sequence
is escaped, even printable ones. While this is permitted for YAML, it is also
more aggressive (and hard to read for non-English locales) than necessary,
and the entire point of rL321283 was to back off such aggressive over-escaping.
So in this change, I have both redirected Output::scalarString to use
yaml::escape _and_ modified yaml::escape to optionally restrict its escaping to
non-printables. This preserves behaviour of any existing clients while giving
them a path to more moderate escaping should they desire.
Reviewers: JDevlieghere, thegameg, MatzeB, vladimir.plyashkun
Reviewed By: thegameg
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44863
llvm-svn: 328661
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
- Remove use of the opencl and amdopencl environment member of the target triple for the AMDGPU target.
- Use function attribute to communicate to the AMDGPU backend to add implicit arguments for OpenCL kernels for the AMDHSA OS.
Differential Revision: https://reviews.llvm.org/D43736
llvm-svn: 328349
There's are race between this thread and the destructor of the test ORC
components on the main threads. I saw flaky failures there in about 4%
of the runs of this unit test.
llvm-svn: 328300
Value::printAsOperand has been scanning the entire module just to
print a single value as an operand, regardless being asked to print a
type or not at all, and regardless really needing to scan the module
to print a type.
It made some of the users of the method exceptionally slow on large
IR-modules (or large MIR-files with large IR-modules embedded).
This patch defers scanning a module looking for struct types, mostly
numbered struct types, as much as possible, speeding up those users
w/o changing any APIs at all.
See speedup examples below:
Release Build:
# 83 seconds -> 5.5 seconds
time ./bin/llc -start-before=irtranslator -stop-after=irtranslator \
-global-isel -global-isel-abort=2 -simplify-mir sqlite3.O0.ll -o \
sqlite3.O0.ll.regbankselected.mir
# 133 seconds -> 6.2 seconds
time ./bin/opt sqlite3.O0.ll -dot-cfg -disable-output
Release + Asserts Build:
# 95 seconds -> 5.5 seconds
time ./bin/llc -start-before=irtranslator -stop-after=irtranslator \
-global-isel -global-isel-abort=2 -simplify-mir sqlite3.O0.ll -o \
sqlite3.O0.ll.regbankselected.mir
# 146 seconds -> 6.2 seconds
time ./bin/opt sqlite3.O0.ll -dot-cfg -disable-output
# 1096 seconds -> 553 seconds
time ./bin/llc -debug-only=isel -fast-isel=false -stop-after=isel \
sqlite3.O0.ll -o /dev/null 2> err
where sqlite3.O0.ll is non-optimized IR produced from
sqlite-amalgamation (http://sqlite.org/download.html), which is entire
SQLite3 implementation in a single C-file.
Benchmarked on 4-cores / 8 threads PCI-E SSD iMac running macOS
Reviewers: dexonsmith, bkramer, void, chandlerc, aditya_nandakumar, dsanders, qcolombet,
Reviewed By: bogner
Subscribers: thegameg, llvm-commits
Differential Revision: https://reviews.llvm.org/D44132
llvm-svn: 328246
Summary:
This reverts commit 364eb09576a7667bc6d3ff80c52a83014ccac976 and separates out
the portion that was fixing binary reader error propagation - turns out, there
are production cases where that causes a regression.
Will re-introduce the error propagation fix separately.
The fix to the text reader error propagation is still "in".
Reviewers: bkramer
Reviewed By: bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44807
llvm-svn: 328244
To resolve symbol context at a particular address, we need to
determine the compiland for the address. We are able to determine
the parent compiland of PDBSymbolFunc, PDBSymbolTypeUDT,
PDBSymbolTypeEnum symbols indirectly through line information.
However no such information is availabile for PDBSymbolData,
i.e. variables.
The Section Contribution table from PDBs has information about
each compiland's contribution to sections by address. For example,
a piece of a contribution looks like,
VA RelativeVA Sect No. Offset Length Compiland
14000087B0 000087B0 0001 000077B0 000000BB exe_main.obj
So given an address, it's possible to determine its compiland with
this information.
llvm-svn: 328178
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
Summary:
This fixes a unittest failure introduced by D44717
D44717 introduced lazy sorting of the internal data structures of the
symbol table. The AddrToMD5Map getter was potentially exposing
inconsistent (unsorted) state. We could sort in the accessor, however,
a client may store the pointer and thus bypass the internal state
management of the symbol table. The alternative in this CL blocks
direct access to the state, thus ensuring consistent
externally-observable state.
Reviewers: davidxl, xur, eraman
Reviewed By: xur
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44757
llvm-svn: 328163
The hash table is a list of buckets, and the *value* stored in
the bucket cannot be 0 since that is reserved. However, the code
here was incorrectly skipping over the 0'th bucket entirely.
The 0'th bucket is perfectly fine, just none of these buckets
can contain the value 0.
As a result, whenever there was a string where hash(S) % Size
was equal to 0, we would write the value in the next bucket
instead. We never caught this in our tests due to *another*
bug, which is that we would iterate the entire list of buckets
looking for the value, only using the hash value as a starting
point. However, the real algorithm stops when it finds 0 in
a bucket since it takes that to mean "the item is not in the
hash table".
The unit test is updated to carefully construct a set of hash
values that will cause one item to hash to 0 mod bucket count,
and the reader is also updated to return an error indicating that
the item is not found when it encounters a 0 bucket.
llvm-svn: 328162
Summary:
External functions appearing as indirect call targets could not be
found in the SymTab, and the value:counter record was represented,
in the text format, using an empty string for the name. This would
then cause a silent parsing error when reading.
This CL:
- adds explicit support for such functions
- fixes the places where we would not propagate errors when reading
- addresses a performance issue due to eager resorting of the SymTab.
Reviewers: xur, eraman, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44717
llvm-svn: 328132
Summary:
We have had at least three pieces of code (in DWARFAbbreviationDeclaration,
DWARFAcceleratorTable and DWARFDie) that have hand-rolled support for
dumping unknown dwarf enum values. While not terrible, they are a bit
distracting and enable small differences to creep in (Unknown_ffff vs.
Unknown_0xffff). I ended up needing to add a fourth place
(DWARFVerifier), so it seems it would be a good time to centralize.
This patch creates an alternative to the XXXString dumping functions in
the BinaryFormat library, which formats an unknown value as
DW_TYPE_unknown_1234, instead of just an empty string. It is based on
the formatv function, as that allows us to avoid materializing the
string for unknown values (and because this way I don't have to invent a
name for the new functions :P).
In this patch I add formatters for dwarf attributes, forms, tags, and
index attributes as these are the ones in use currently, but adding
other enums is straight-forward.
Reviewers: dblaikie, JDevlieghere, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44570
llvm-svn: 328090
operation all-or-nothing, rather than allowing materialization on a per-symbol
basis.
This addresses a shortcoming of per-symbol materialization: If a
MaterializationUnit (/SymbolSource) wants to materialize more symbols than
requested (which is likely: most materializers will want to materialize whole
modules) then it needs a way to notify the symbol table about the extra symbols
being materialized. This process (checking what has been requested against what
is being provided and notifying the symbol table about the difference) has to
be repeated at every level of the JIT stack. Making materialization
all-or-nothing eliminates this issue, simplifying both materializer
implementations and the symbol table (VSO class) API. The cost is that
per-symbol materialization (e.g. for individual symbols in a module) now
requires multiple MaterializationUnits.
llvm-svn: 327946
Now the Windows mangling modes ('w' and 'x') do not do any mangling for
symbols starting with '?'. This means that clang can stop adding the
hideous '\01' leading escape. This means LLVM debug logs are less likely
to contain ASCII escape characters and it will be easier to copy and
paste MS symbol names from IR.
Finally.
For non-Windows platforms, names starting with '?' still get IR
mangling, so once clang stops escaping MS C++ names, we will get extra
'_' prefixing on MachO. That's fine, since it is currently impossible to
construct a triple that uses the MS C++ ABI in clang and emits macho
object files.
Differential Revision: https://reviews.llvm.org/D7775
llvm-svn: 327734
It previously only worked when the key and value types were
both 4 byte integers. We now have a use case for a non trivial
value type, so we need to extend it to support arbitrary value
types, which means templatizing it.
llvm-svn: 327647
Summary:
Some PDB symbols do not have a valid VA or RVA but have Addr by Section and Offset. For example, a variable in thread-local storage has the following properties:
get_addressOffset: 0
get_addressSection: 5
get_lexicalParentId: 2
get_name: g_tls
get_symIndexId: 12
get_typeId: 4
get_dataKind: 6
get_symTag: 7
get_locationType: 2
This change provides a new method to locate line numbers by Section and Offset from those symbols.
Reviewers: zturner, rnk, llvm-commits
Subscribers: asmith, JDevlieghere
Differential Revision: https://reviews.llvm.org/D44407
llvm-svn: 327601
This reverts commit r327566, it breaks
test/ExecutionEngine/OrcMCJIT/test-global-ctors.ll.
The test doesn't crash with a stack trace, unfortunately. It merely
returns 1 as the exit code.
ASan didn't produce a report, and I reproduced this on my Linux machine
and Windows box.
llvm-svn: 327576
Layer implementations typically mutate module state, and this is better
reflected by having layers own the Module they are operating on.
llvm-svn: 327566
Summary:
This patch replaces the two switches which are deducing the size of
various forms with a single implementation. I have put the new
implementation into BinaryFormat, to avoid introducing dependencies
between the two independent libraries (DebugInfo and CodeGen) that need
this functionality.
Reviewers: aprantl, JDevlieghere, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44418
llvm-svn: 327486
The lookup function takes a list of VSOs, a set of symbol names (or just one
symbol name) and a materialization function object. It returns an
Expected<SymbolMap> (if given a set of names) or an Expected<JITEvaluatedSymbol>
(if given just one name). The lookup method constructs an
AsynchronousSymbolQuery for the given names, applies that query to each VSO in
the list in turn, and then blocks waiting for the query to complete. If
threading is enabled then the materialization function object can be used to
execute the materialization on different threads. If threading is disabled the
MaterializeOnCurrentThread utility must be used.
llvm-svn: 327474
Added helpers to build G_FCONSTANT, along with matching ConstantFP and
unit tests for the same.
Sample usage.
auto MIB = Builder.buildFConstant(s32, 0.5); // Build IEEESingle
For Matching the above
const ConstantFP* Tmp;
mi_match(DstReg, MRI, m_GFCst(Tmp));
https://reviews.llvm.org/D44128
reviewed by: volkan
llvm-svn: 327152
This is like MemoryBuffer (read-only) and WritableMemoryBuffer
(writable private), but where the underlying file can be modified
after writing. This is useful when you want to open a file, make
some targeted edits, and then write it back out.
Differential Revision: https://reviews.llvm.org/D44230
llvm-svn: 327057
Summary:
Building MemorySSA gathers alias information for Defs/Uses.
Store and expose this information when optimizing uses (when building MemorySSA),
and when optimizing defs or updating uses (getClobberingMemoryAccess).
Current patch does not propagate alias information through MemoryPhis.
Reviewers: gbiv, dberlin
Subscribers: Prazek, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D38569
llvm-svn: 327035
Whilst working on improvements to the error handling of the debug line
parsing code, I noticed that if an invalid offset were to be specified
in a call to getOrParseLineTable(), an entry in the LineTableMap would
still be created, even if the offset was not within the section range.
The immediate parsing attempt afterwards would fail (it would end up
getting a version of 0), and thereafter, any subsequent calls to
getOrParseLineTable or getLineTable would return the default-
constructed, invalid line table. In reality, we shouldn't even attempt
to parse this table, and we should always return a nullptr from these
two functions for this situation.
I have tested this via a unit test, which required some new framework
for unit testing debug line. My plan is to add quite a few more unit
tests for the new error reporting mechanism that will follow shortly,
hence the reason why the supporting code for the tests are written the
way they are - I intend to extend the DwarfGenerator class to support
generating debug line. At that point, I'll make sure that there are a
few positive test cases for this and the parsing code too.
Differential Revision: https://reviews.llvm.org/D44200
Reviewers: JDevlieghere, aprantl
llvm-svn: 326995
Summary:
Most of the time, compiler statistics can be obtained using a process that
performs a single compilation and terminates such as llc. However, this isn't
always the case. JITs for example, perform multiple compilations over their
lifetime and STATISTIC() will record cumulative values across all of them.
Provide tools like this with the facilities needed to measure individual
compilations by allowing them to reset the STATISTIC() values back to zero using
llvm::ResetStatistics(). It's still the tools responsibility to ensure that they
perform compilations in such a way that the results are meaningful to their
intended use.
Reviewers: qcolombet, rtereshin, bogner, aditya_nandakumar
Reviewed By: bogner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44181
llvm-svn: 326981
SampleProfReader assumes function names in the profile are all mangled names.
However, there are cases that few demangled names are somehow contained in
the profile (usually because of debug info problems), which may trigger parsing
error in SampleProfReader and cause the whole profile to be unusable. The patch
extends SampleProfReader to handle profiles with demangled names, so that those
profiles can still be useful.
Differential revision: https://reviews.llvm.org/D44161
llvm-svn: 326905
Summary: This helps to determine the line number for a PDB type with definition
Reviewers: zturner, llvm-commits, rnk
Reviewed By: zturner
Subscribers: rengolin, JDevlieghere
Differential Revision: https://reviews.llvm.org/D44119
llvm-svn: 326857
In case PredBB == BB and StopAt == BB's terminator, StopAt != &*BI will
fail, because BB's terminator instruction gets replaced.
By using BB.getTerminator() we get the current terminator which we can use
to compare.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Differential Revision: https://reviews.llvm.org/D43822
llvm-svn: 326779
Summary:
Fabs is a common floating-point operation, especially for some expansions. This patch adds
a new generic opcode for llvm.fabs.* intrinsic in order to avoid building/matching this intrinsic.
Reviewers: qcolombet, aditya_nandakumar, dsanders, rovka
Reviewed By: aditya_nandakumar
Subscribers: kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D43864
llvm-svn: 326749
Summary:
It can be useful for tools to be able to retrieve the values of variables
declared via STATISTIC() directly without having to emit them and parse
them back. Use cases include:
* Needing to report specific statistics to a test harness
* Wanting to post-process statistics. For example, to produce a percentage of
functions that were fully selected by GlobalISel
Make this possible by adding llvm::GetStatistics() which returns an
iterator_range that can be used to inspect the statistics that have been
touched during execution. When statistics are disabled (NDEBUG and not
LLVM_ENABLE_STATISTICS) this method will return an empty range.
This patch doesn't address the effect of multiple compilations within the same
process. In such situations, the statistics will be cumulative for all
compilations up to the GetStatistics() call.
Reviewers: qcolombet, rtereshin, aditya_nandakumar, bogner
Reviewed By: rtereshin, bogner
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D43901
This re-commit fixes a missing include of <vector> which it seems clang didn't
mind but G++ and MSVC objected to. It seems that, clang was ok with std::vector
only being forward declared at the point of use since it was fully defined
eventually but G++/MSVC both rejected it at the point of use.
llvm-svn: 326738
Despite building cleanly on my machine in three separate configs, it's failing on pretty much all bots due to missing includes among other things. Investigating.
llvm-svn: 326726
Summary:
It can be useful for tools to be able to retrieve the values of variables
declared via STATISTIC() directly without having to emit them and parse
them back. Use cases include:
* Needing to report specific statistics to a test harness
* Wanting to post-process statistics. For example, to produce a percentage of
functions that were fully selected by GlobalISel
Make this possible by adding llvm::GetStatistics() which returns an
iterator_range that can be used to inspect the statistics that have been
touched during execution. When statistics are disabled (NDEBUG and not
LLVM_ENABLE_STATISTICS) this method will return an empty range.
This patch doesn't address the effect of multiple compilations within the same
process. In such situations, the statistics will be cumulative for all
compilations up to the GetStatistics() call.
Reviewers: qcolombet, rtereshin, aditya_nandakumar, bogner
Reviewed By: rtereshin, bogner
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D43901
llvm-svn: 326723
getCompare returns true, false or undef constants if the comparison can
be evaluated, or nullptr if it cannot. This is in line with what
ConstantExpr::getCompare returns. It also allows us to use
ConstantExpr::getCompare for comparing constants.
Reviewers: davide, mssimpso, dberlin, anna
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D43761
llvm-svn: 326720
In stage2 -O3 builds of llc, this results in small but measurable
increases in the number of variables with locations, and in the number
of unique source variables overall.
(According to llvm-dwarfdump --statistics, there are 123 additional
variables with locations, which is just a 0.006% improvement).
The size of the .debug_loc section of the llc dsym increases by 0.004%.
llvm-svn: 326629
In stage2 -O3 builds of llc, this results in a 0.3% increase in the
number of variables with locations, and a 0.2% increase in the number of
unique source variables overall.
The size of the .debug_loc section of the llc dsym increases by 0.5%.
llvm-svn: 326621
Provide checkedAdd and checkedMul functions, providing checked
arithmetic on signed integers.
Differential Revision: https://reviews.llvm.org/D43704
llvm-svn: 326516
Removes verifyDomTree, using assert(verify()) everywhere instead, and
changes verify a little to always run IsSameAsFreshTree first in order
to print good output when we find errors. Also adds verifyAnalysis for
PostDomTrees, which will allow checking of PostDomTrees it the same way
we check DomTrees and MachineDomTrees.
Differential Revision: https://reviews.llvm.org/D41298
llvm-svn: 326315
Until this patch, only `powerpc` and `ppc32` were recognized as valid
PowerPC 32-bit architectures in a target triple. This was incompatible
with the triple `ppc-apple-darwin` as returned for libObject. I found
out about this when working on a test case using a binary generated on
an old PowerBook G4.
We had the choice of either fix this in the Mach-O object parser or
in the Triple implementation. I chose the latter because it feels like
the most canonical place.
Differential revision: https://reviews.llvm.org/D43760
llvm-svn: 326182
The only cases I can come up with where this invalidation needs to
happen is when there's a deletion somewhere. If we find more creative
test-cases, we can probably go with another approach mentioned on
PR36529.
Fixes PR36529.
llvm-svn: 326177
This change improves incremental rebuild performance on dual Xeon 8168
machines by 54%. This change also improves run time code gen by not
forcing the case values to be lvalues.
llvm-svn: 326109
Summary:
In the test case, the machine scheduler moves a dead write to a subreg
up into the middle of a segment of the overall reg's live range, where
the segment had liveness only for other subregs in the reg.
handleMoveUp created an invalid live range, causing an assert a bit
later.
This commit fixes it to handle that situation. The segment is split in
two at the insertion point, and the part after the split, and any
subsequent segments up to the old position, are changed to be defined by
the moved def.
V2: Better test.
Subscribers: MatzeB, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D43478
Change-Id: Ibc42445ddca84e79ad1f616401015d22bc63832e
llvm-svn: 326087
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. In this extension a content type is added,
DW_LNCT_LLVM_source, which contains the embedded source code of the file.
Add new optional attribute for !DIFile IR metadata called source which contains
source text. Use this to output the source to the DWARF line table of code
objects. Analogously extend METADATA_FILE in Bitcode and .file directive in ASM
to support optional source.
Teach llvm-dwarfdump and llvm-objdump about the new values. Update the output
format of llvm-dwarfdump to make room for the new attribute on file_names
entries, and support embedded sources for the -source option in llvm-objdump.
Differential Revision: https://reviews.llvm.org/D42765
llvm-svn: 325970
The base case for any_of was incorrectly returning true. Also add test
case which uses m_any_of(preds...) where none of the predicates are
true.
llvm-svn: 325848
The issue was that the has function was generating different results depending
on the signedness of char on the host platform. This commit fixes the issue by
explicitly using an unsigned char type to prevent sign extension and
adds some extra tests.
The original commit message was:
This patch implements a variant of the DJB hash function which folds the
input according to the algorithm in the Dwarf 5 specification (Section
6.1.1.4.5), which in turn references the Unicode Standard (Section 5.18,
"Case Mappings").
To achieve this, I have added a llvm::sys::unicode::foldCharSimple
function, which performs this mapping. The implementation of this
function was generated from the CaseMatching.txt file from the Unicode
spec using a python script (which is also included in this patch). The
script tries to optimize the function by coalescing adjecant mappings
with the same shift and stride (terms I made up). Theoretically, it
could be made a bit smarter and merge adjecant blocks that were
interrupted by only one or two characters with exceptional mapping, but
this would save only a couple of branches, while it would greatly
complicate the implementation, so I deemed it was not worth it.
Since we assume that the vast majority of the input characters will be
US-ASCII, the folding hash function has a fast-path for handling these,
and only whips out the full decode+fold+encode logic if we encounter a
character outside of this range. It might be possible to implement the
folding directly on utf8 sequences, but this would also bring a lot of
complexity for the few cases where we will actually need to process
non-ascii characters.
Reviewers: JDevlieghere, aprantl, probinson, dblaikie
Subscribers: mgorny, hintonda, echristo, clayborg, vleschuk, llvm-commits
Differential Revision: https://reviews.llvm.org/D42740
llvm-svn: 325732
than a shared ObjectFile/MemoryBuffer pair.
There's no need to pre-parse the buffer into an ObjectFile before passing it
down to the linking layer, and moving the parsing into the linking layer allows
us remove the parsing code at each call site.
llvm-svn: 325725
The bug was introduced here:
https://reviews.llvm.org/rL296409
...but the patch doesn't use maxnum and nothing else in
trunk has tried since then, so the bug went unnoticed.
llvm-svn: 325607
This is the second part of recommit of r325224. The previous part was
committed in r325426, which deals with C++ memory allocation. Solution
for C memory allocation involved functions `llvm::malloc` and similar.
This was a fragile solution because it caused ambiguity errors in some
cases. In this commit the new functions have names like `llvm::safe_malloc`.
The relevant part of original comment is below, updated for new function
names.
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
In some cases memory is allocated by a call to some of C allocation
functions, malloc, calloc and realloc. They are used for interoperability
with C code, when allocated object has variable size and when it is
necessary to avoid call of constructors. In many calls the result is not
checked for null pointer. To simplify checks, new functions are defined
in the namespace 'llvm': `safe_malloc`, `safe_calloc` and `safe_realloc`.
They behave as corresponding standard functions but produce fatal error if
allocation fails. This change replaces the standard functions like 'malloc'
in the cases when the result of the allocation function is not checked
for null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statement is added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325551
This was originally reported as a bug with the symptom being "cvdump
crashes when printing an LLD-linked PDB that has an S_FILESTATIC record
in it". After some additional investigation, I determined that this was
a symptom of a larger problem, and in fact the real problem was in the
way we emitted the global PDB string table. As evidence of this, you can
take any lld-generated PDB, run cvdump -stringtable on it, and it would
return no results.
My hypothesis was that cvdump could not *find* the string table to begin
with. Normally it would do this by looking in the "named stream map",
finding the string /names, and using its value as the stream index. If
this lookup fails, then cvdump would fail to load the string table.
To test this hypothesis, I looked at the name stream map generated by a
link.exe PDB, and I emitted exactly those bytes into an LLD-generated
PDB. Suddenly, cvdump could read our string table!
This code has always been hacky and we knew there was something we
didn't understand. After all, there were some comments to the effect of
"we have to emit strings in a specific order, otherwise things don't
work". The key to fixing this was finally understanding this.
The way it works is that it makes use of a generic serializable hash map
that maps integers to other integers. In this case, the "key" is the
offset into a buffer, and the value is the stream number. If you index
into the buffer at the offset specified by a given key, you find the
name. The underlying cause of all these problems is that we were using
the identity function for the hash. i.e. if a string's offset in the
buffer was 12, the hash value was 12. Instead, we need to hash the
string *at that offset*. There is an additional catch, in that we have
to compute the hash as a uint32 and then truncate it to uint16.
Making this work is a little bit annoying, because we use the same hash
table in other places as well, and normally just using the identity
function for the hash function is actually what's desired. I'm not
totally happy with the template goo I came up with, but it works in any
case.
The reason we never found this bug through our own testing is because we
were building a /parallel/ hash table (in the form of an
llvm::StringMap<>) and doing all of our lookups and "real" hash table
work against that. I deleted all of that code and now everything goes
through the real hash table. Then, to test it, I added a unit test which
adds 7 strings and queries the associated values. I test every possible
insertion order permutation of these 7 strings, to verify that it really
does work as expected.
Differential Revision: https://reviews.llvm.org/D43326
llvm-svn: 325386
Summary: extractBits assumes that `!this->isSingleWord() implies !Result.isSingleWord()`, which may not necessarily be true. Handle both cases.
Reviewers: RKSimon
Subscribers: sanjoy, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43363
llvm-svn: 325311
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
Usual programming practice does not require checking result of 'operator
new' because it throws 'std::bad_alloc' in the case of allocation error.
However, LLVM is usually built with exceptions turned off, so 'new' can
return null pointer. This change installs custom new handler, which causes
fatal error in the case of out of memory. The handler is installed
automatically prior to call to 'main' during construction of a static
object defined in 'lib/Support/ErrorHandling.cpp'. If the application does
not use this file, the handler may be installed manually by a call to
'llvm::install_out_of_memory_new_handler', declared in
'include/llvm/Support/ErrorHandling.h".
There are calls to C allocation functions, malloc, calloc and realloc.
They are used for interoperability with C code, when allocated object has
variable size and when it is necessary to avoid call of constructors. In
many calls the result is not checked against null pointer. To simplify
checks, new functions are defined in the namespace 'llvm' with the
same names as these C function. These functions produce fatal error if
allocation fails. User should use 'llvm::malloc' instead of 'std::malloc'
in order to use the safe variant. This change replaces 'std::malloc'
in the cases when the result of allocation function is not checked against
null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statements are added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325224
Summary:
This patch adds templated functions to MachineIRBuilder for some opcodes
and adds pattern matcher support for G_AND and G_OR.
Reviewers: aditya_nandakumar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D43309
llvm-svn: 325162
Commit https://reviews.llvm.org/rL324489 added
EXPECT_EQ(false, N->isUnsigned());
which older GCC versions dislike for some reason. Anyway, it looks like the
proper GTest way is to use EXPECT_FALSE, etc.
Differential Revision: https://reviews.llvm.org/D43233
llvm-svn: 325121
Summary:
This patch implements a variant of the DJB hash function which folds the
input according to the algorithm in the Dwarf 5 specification (Section
6.1.1.4.5), which in turn references the Unicode Standard (Section 5.18,
"Case Mappings").
To achieve this, I have added a llvm::sys::unicode::foldCharSimple
function, which performs this mapping. The implementation of this
function was generated from the CaseMatching.txt file from the Unicode
spec using a python script (which is also included in this patch). The
script tries to optimize the function by coalescing adjecant mappings
with the same shift and stride (terms I made up). Theoretically, it
could be made a bit smarter and merge adjecant blocks that were
interrupted by only one or two characters with exceptional mapping, but
this would save only a couple of branches, while it would greatly
complicate the implementation, so I deemed it was not worth it.
Since we assume that the vast majority of the input characters will be
US-ASCII, the folding hash function has a fast-path for handling these,
and only whips out the full decode+fold+encode logic if we encounter a
character outside of this range. It might be possible to implement the
folding directly on utf8 sequences, but this would also bring a lot of
complexity for the few cases where we will actually need to process
non-ascii characters.
Reviewers: JDevlieghere, aprantl, probinson, dblaikie
Subscribers: mgorny, hintonda, echristo, clayborg, vleschuk, llvm-commits
Differential Revision: https://reviews.llvm.org/D42740
llvm-svn: 325107
Rather than encode the absence of a checksum with a Kind variant, instead put
both the kind and value in a struct and wrap it in an Optional.
Differential Revision: http://reviews.llvm.org/D43043
llvm-svn: 324928
Handles were returned by addModule and used as keys for removeModule,
findSymbolIn, and emitAndFinalize. Their job is now subsumed by VModuleKeys,
which simplify resource management by providing a consistent handle across all
layers.
llvm-svn: 324700
'size' of a vector is unsigned, and I accidentially compared
it to an int through GTEST. I switched it to unsigned, which
is the template parameter type anyway.
llvm-svn: 324625
This is a support change for a CFE change (https://reviews.llvm.org/D42978)
that allows march and -target-cpu to list the valid targets in a note. The changes
are limited to the ARM/AArch64, since this is the only target that gets the CPU
list from LLVM.
llvm-svn: 324623
This patch is the LLVM part of fixing the issues, described in
https://bugs.llvm.org/show_bug.cgi?id=36168
* The representation of enumerator values in the debug info metadata now
contains a boolean flag isUnsigned, which determines how the bits of
the value are interpreted.
* The DW_TAG_enumeration type DIE now always (for DWARF version >= 3)
includes a DW_AT_type attribute, which refers to the underlying
integer type, as suggested in DWARFv4 (5.7 Enumeration Type Entries).
* The debug info metadata for enumeration type contains (in flags)
indication whether this is a C++11 "fixed enum".
* For C++11 enumeration with a fixed underlying type, the DIE also
includes the DW_AT_enum_class attribute (for DWARF version >= 4).
* Encoding of enumerator constants uses DW_FORM_sdata for signed values
and DW_FORM_udata for unsigned values, as suggested by DWARFv4 (7.5.4
Attribute Encodings).
The changes should be backwards compatible:
* the isUnsigned attribute is optional and defaults to false.
* if the underlying type for the enumeration is not available, the
enumerator values are considered signed.
* the FixedEnum flag defaults to clear.
* the bitcode format for DIEnumerator stores the unsigned flag bit #1 of
the first record element, so the format does not change and the zero
previously stored there is consistent with the false default for
IsUnsigned.
Differential Revision: https://reviews.llvm.org/D42734
llvm-svn: 324489
n Rust, an enum that carries data in the variants is, essentially, a
discriminated union. Furthermore, the Rust compiler will perform
space optimizations on such enums in some situations. Previously,
DWARF for these constructs was emitted using a hack (a magic field
name); but this approach stopped working when more space optimizations
were added in https://github.com/rust-lang/rust/pull/45225.
This patch changes LLVM to allow discriminated unions to be
represented in DWARF. It adds createDiscriminatedUnionType and
createDiscriminatedMemberType to DIBuilder and then arranges for this
to be emitted using DWARF's DW_TAG_variant_part and DW_TAG_variant.
Note that DWARF requires that a discriminated union be represented as
a structure with a variant part. However, as Rust only needs to emit
pure discriminated unions, this is what I chose to expose on
DIBuilder.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D42082
llvm-svn: 324426
In particular this patch switches RTDyldObjectLinkingLayer to use
orc::SymbolResolver and threads the requried changse (ExecutionSession
references and VModuleKeys) through the existing layer APIs.
The purpose of the new resolver interface is to improve query performance and
better support parallelism, both in JIT'd code and within the compiler itself.
The most visibile change is switch of the <Layer>::addModule signatures from:
Expected<Handle> addModule(std::shared_ptr<ModuleType> Mod,
std::shared_ptr<JITSymbolResolver> Resolver)
to:
Expected<Handle> addModule(VModuleKey K, std::shared_ptr<ModuleType> Mod);
Typical usage of addModule will now look like:
auto K = ES.allocateVModuleKey();
Resolvers[K] = createSymbolResolver(...);
Layer.addModule(K, std::move(Mod));
See the BuildingAJIT tutorial code for example usage.
llvm-svn: 324405
This resolver conforms to the LegacyJITSymbolResolver interface, and will be
replaced with a null-returning resolver conforming to the newer
orc::SymbolResolver interface in the near future. This patch renames the class
to avoid a clash.
llvm-svn: 324175
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
Summary:
As discussed in D42244, we have difficulty describing the legality of some
operations. We're not able to specify relationships between types.
For example, declaring the following
setAction({..., 0, s32}, Legal)
setAction({..., 0, s64}, Legal)
setAction({..., 1, s32}, Legal)
setAction({..., 1, s64}, Legal)
currently declares these type combinations as legal:
{s32, s32}
{s64, s32}
{s32, s64}
{s64, s64}
but we currently have no means to say that, for example, {s64, s32} is
not legal. Some operations such as G_INSERT/G_EXTRACT/G_MERGE_VALUES/
G_UNMERGE_VALUES have relationships between the types that are currently
described incorrectly.
Additionally, G_LOAD/G_STORE currently have no means to legalize non-atomics
differently to atomics. The necessary information is in the MMO but we have no
way to use this in the legalizer. Similarly, there is currently no way for the
register type and the memory type to differ so there is no way to cleanly
represent extending-load/truncating-store in a way that can't be broken by
optimizers (resulting in illegal MIR).
It's also difficult to control the legalization strategy. We've added support
for legalizing non-power of 2 types but there's still some hardcoded assumptions
about the strategy. The main one I've noticed is that type0 is always legalized
before type1 which is not a good strategy for `type0 = G_EXTRACT type1, ...` if
you need to widen the container. It will converge on the same result eventually
but it will take a much longer route when legalizing type0 than if you legalize
type1 first.
Lastly, the definition of legality and the legalization strategy is kept
separate which is not ideal. It's helpful to be able to look at a one piece of
code and see both what is legal and the method the legalizer will use to make
illegal MIR more legal.
This patch adds a layer onto the LegalizerInfo (to be removed when all targets
have been migrated) which resolves all these issues.
Here are the rules for shift and division:
for (unsigned BinOp : {G_LSHR, G_ASHR, G_SDIV, G_UDIV})
getActionDefinitions(BinOp)
.legalFor({s32, s64}) // If type0 is s32/s64 then it's Legal
.clampScalar(0, s32, s64) // If type0 is <s32 then WidenScalar to s32
// If type0 is >s64 then NarrowScalar to s64
.widenScalarToPow2(0) // Round type0 scalars up to powers of 2
.unsupported(); // Otherwise, it's unsupported
This describes everything needed to both define legality and describe how to
make illegal things legal.
Here's an example of a complex rule:
getActionDefinitions(G_INSERT)
.unsupportedIf([=](const LegalityQuery &Query) {
// If type0 is smaller than type1 then it's unsupported
return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
})
.legalIf([=](const LegalityQuery &Query) {
// If type0 is s32/s64/p0 and type1 is a power of 2 other than 2 or 4 then it's legal
// We don't need to worry about large type1's because unsupportedIf caught that.
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
return false;
return isPowerOf2_32(Ty1.getSizeInBits()) &&
(Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
})
.clampScalar(0, s32, s64)
.widenScalarToPow2(0)
.maxScalarIf(typeInSet(0, {s32}), 1, s16) // If type0 is s32 and type1 is bigger than s16 then NarrowScalar type1 to s16
.maxScalarIf(typeInSet(0, {s64}), 1, s32) // If type0 is s64 and type1 is bigger than s32 then NarrowScalar type1 to s32
.widenScalarToPow2(1) // Round type1 scalars up to powers of 2
.unsupported();
This uses a lambda to say that G_INSERT is unsupported when type0 is bigger than
type1 (in practice, this would be a default rule for G_INSERT). It also uses one
to describe the legal cases. This particular predicate is equivalent to:
.legalFor({{s32, s1}, {s32, s8}, {s32, s16}, {s64, s1}, {s64, s8}, {s64, s16}, {s64, s32}})
In terms of performance, I saw a slight (~6%) performance improvement when
AArch64 was around 30% ported but it's pretty much break even right now.
I'm going to take a look at constexpr as a means to reduce the initialization
cost.
Future work:
* Make it possible for opcodes to share rulesets. There's no need for
G_LSHR/G_ASHR/G_SDIV/G_UDIV to have separate rule and ruleset objects. There's
no technical barrier to this, it just hasn't been done yet.
* Replace the type-index numbers with an enum to get .clampScalar(Type0, s32, s64)
* Better names for things like .maxScalarIf() (clampMaxScalar?) and the vector rules.
* Improve initialization cost using constexpr
Possible future work:
* It's possible to make these rulesets change the MIR directly instead of
returning a description of how to change the MIR. This should remove a little
overhead caused by parsing the description and routing to the right code, but
the real motivation is that it removes the need for LegalizeAction::Custom.
With Custom removed, there's no longer a requirement that Custom legalization
change the opcode to something that's considered legal.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, reames, bogner
Reviewed By: bogner
Subscribers: hintonda, bogner, aemerson, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42251
llvm-svn: 323681
Summary:
The improvements to the LegalizerInfo discussed in D42244 require that
LegalizerInfo::LegalizeAction be available for use in other classes. As such,
it needs to be moved out of LegalizerInfo. This has been done separately to the
next patch to minimize the noise in that patch.
llvm-svn: 323669
This brings it in line with std::optional. My recent changes to
make Optional of trivial types trivially copyable introduced
diverging behavior depending on the type, which is bad. Now all
types have the same moving behavior.
llvm-svn: 323445
first argument.
This makes lookupFlags more consistent with lookup (which takes the query as the
first argument) and composes better in practice, since lookups are usually
linearly chained: Each lookupFlags can populate the result map based on the
symbols not found in the previous lookup. (If the maps were returned rather than
passed by reference there would have to be a merge step at the end).
llvm-svn: 323398
functions/methods that return JITSymbols.
lookupFlagsWithLegacyFn takes a SymbolNameSet and a legacy lookup function and
returns a LookupFlagsResult. It uses the legacy lookup function to search for
each symbol. If found, getFlags is called on the symbol and the flags added to
the SymbolFlags map. If not found, the symbol is added to the SymbolsNotFound
set.
lookupWithLegacyFn takes an AsynchronousSymbolQuery, a SymbolNameSet and a
legacy lookup function. Each symbol in the SymbolNameSet is searched for via the
legacy lookup function. If it is found, its getAddress function is called
(triggering materialization if it has not happened already) and the resulting
mapping stored in the query. If it is not found the symbol is added to the
unresolved symbols set which is returned at the end of the function. If an
error occurs during legacy lookup or materialization it is passed to the
query via setFailed and the function returns immediately.
llvm-svn: 323388
This patch adds a LambdaSymbolResolver convenience utility that can create an
orc::SymbolResolver from a pair of function objects that supply the behavior for
the lookupFlags and lookup methods.
This class plays the same role for orc::SymbolResolver as the legacy
LambdaResolver class plays for LegacyJITSymbolResolver, and will replace the
latter class once all ORC APIs are migrated to orc::SymbolResolver.
This patch also adds some documentation for the orc::SymbolResolver class as
this was left out of the original commit.
llvm-svn: 323375
Summary:
`getAction(const InstrAspect &) const` breaks encapsulation by exposing
the smaller components that are used to decide how to legalize an
instruction.
This is a problem because we need to change the implementation of
LegalizerInfo so that it's able to describe particular type combinations
rather than just cartesian products of types.
For example, declaring the following
setAction({..., 0, s32}, Legal)
setAction({..., 0, s64}, Legal)
setAction({..., 1, s32}, Legal)
setAction({..., 1, s64}, Legal)
currently declares these type combinations as legal:
{s32, s32}
{s64, s32}
{s32, s64}
{s64, s64}
but we currently have no means to say that, for example, {s64, s32} is
not legal. Some operations such as G_INSERT/G_EXTRACT/G_MERGE_VALUES/
G_UNMERGE_VALUES has relationships between the types that are currently
described incorrectly.
Additionally, G_LOAD/G_STORE currently have no means to legalize non-atomics
differently to atomics. The necessary information is in the MMO but we have no
way to use this in the legalizer. Similarly, there is currently no way for the
register type and the memory type to differ so there is no way to cleanly
represent extending-load/truncating-store in a way that can't be broken by
optimizers (resulting in illegal MIR).
This patch introduces LegalityQuery which provides all the information
needed by the legalizer to make a decision on whether something is legal
and how to legalize it.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, reames, bogner
Reviewed By: bogner
Subscribers: bogner, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D42244
llvm-svn: 323342
Summary:
This patch extends the DISubrange 'count' field to take either a
(signed) constant integer value or a reference to a DILocalVariable
or DIGlobalVariable.
This is patch [1/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.
Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: rnk, probinson, fhahn, aemerson, rengolin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41695
llvm-svn: 323313
Summary:
Discovered when clangd loads YAML symbols, some symbol documentations
start with indicators (e.g. "-"), but YAML prints them as plain scalars
(no quotes), which make the YAML parser fail to parse.
For these kind of strings, we need quotes.
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: ilya-biryukov, ioeric, llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D42362
llvm-svn: 323097
orc::SymbolResolver to JITSymbolResolver adapter.
The new orc::SymbolResolver interface uses asynchronous queries for better
performance. (Asynchronous queries with bulk lookup minimize RPC/IPC overhead,
support parallel incoming queries, and expose more available work for
distribution). Existing ORC layers will soon be updated to use the
orc::SymbolResolver API rather than the legacy llvm::JITSymbolResolver API.
Because RuntimeDyld still uses JITSymbolResolver, this patch also includes an
adapter that wraps an orc::SymbolResolver with a JITSymbolResolver API.
llvm-svn: 323073
lookupFlags returns a SymbolFlagsMap for the requested symbols, along with a
set containing the SymbolStringPtr for any symbol not found in the VSO.
The JITSymbolFlags for each symbol will have been stripped of its transient
JIT-state flags (i.e. NotMaterialized, Materializing).
Calling lookupFlags does not trigger symbol materialization.
llvm-svn: 323060
Summary:
It's generally not safe to perform multiple DomTree updates without using the incremental API.
Although it is supposed to work in this particular case, the testcase is misleading/confusing, and it's better to remove it.
Reviewers: dberlin, brzycki, davide, grosser
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42333
llvm-svn: 323058
These fix some odd cfg cases where batch-updating the post
dom tree fails. Usually around infinite loops and roots
ending up being different.
Differential Revision: https://reviews.llvm.org/D42247
llvm-svn: 323034
Summary:
This patch attempts to fix the DomTree incremental insertion bug found here [[ https://bugs.llvm.org/show_bug.cgi?id=35969 | PR35969 ]] .
When performing an insertion into a piece of unreachable CFG, we may find the same not at different levels. When this happens, the node can turn out to be affected when we find it starting from a node with a lower level in the tree. The level at which we start visitation affects if we consider a node affected or not.
This patch tracks the lowest level at which each node was visited during insertion and allows it to be visited multiple times, if it can cause it to be considered affected.
Reviewers: brzycki, davide, dberlin, grosser
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42231
llvm-svn: 322993
r322086 removed the trailing information describing reg classes for each
register.
This patch adds printing reg classes next to every register when
individual operands/instructions/basic blocks are printed. In the case
of dumping MIR or printing a full function, by default don't print it.
Differential Revision: https://reviews.llvm.org/D42239
llvm-svn: 322867
While the memmove workaround fixed it for GCC 6.3. GCC 4.8 and GCC 7.1
are still broken. I have no clue what's going on, just blacklist GCC for
now.
Needless to say this code is ubsan, asan and msan-clean.
llvm-svn: 322862
This makes uses of Optional more transparent to the compiler (and
clang-tidy) and generates slightly smaller code.
This is a re-land of r317019, which had issues with GCC 4.8 back then.
Those issues don't reproduce anymore, but I'll watch the buildbots
closely in case anything goes wrong.
llvm-svn: 322838
Summary:
The class wraps a uint64_t and an enum to represent the type of profile
count (real and synthetic) with some helper methods.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41883
llvm-svn: 322771
Summary:
Discovered while working on a patch to move alignment in
@llvm.memcpy/move/set from an arg into parameter attributes.
The current implementations of AttributeSet::removeAttribute() and
AttributeList::removeAttribute crash when attempting to remove the
alignment attribute. Currently, these implementations add the
to-be-removed attributes to an AttrBuilder and then remove
the builder from the list/set. Alignment is special in that it
must be added to a builder with an integer value for the alignment;
attempts to add alignment to a builder without a value is an error.
This change fixes the removeAttribute implementations for AttributeSet and
AttributeList to make them able to remove the alignment, and other similar,
attributes.
Reviewers: rnk, chandlerc, pete, javed.absar, reames
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41951
llvm-svn: 322735
With my bad luck I separately implemented the DomTree preservation
for ConstantFoldTerminator before r322401 was committed. Commit the
tests which I think still provide some value.
llvm-svn: 322683
Summary: Not sure this needs a review or not. Erring on the safe side.
Reviewers: dblaikie
Differential Revision: https://reviews.llvm.org/D41666
llvm-svn: 322538
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perform the
preversation was minimally altered and simply marked as
preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements such as threading across loop headers.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: mgorny, dmgreen, kuba, rnk, rsmith, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 322401
Planning to add support for named vregs. This puts is in a conundrum since
physregs are named as well. To rectify this we need to use a sigil other than
'%' for physregs in MIR. We've settled on using '$' for physregs but first we
must repurpose it from external symbols using it, which is what this commit is
all about. We think '&' will have familiar semantics for C/C++ users.
llvm-svn: 322146
version being used on some of the green dragon builders (plus a clang-format).
Workaround: AsynchronousSymbolQuery and VSO want to work with
JITEvaluatedSymbols anyway, so just use them (instead of JITSymbol, which
happens to tickle the bug).
The libcxx bug being worked around was fixed in r276003, and there are plans to
update the offending builders.
llvm-svn: 322140
Summary:
https://reviews.llvm.org/rL321877 introduced the `OptTable::findNearest`
method, to find the closest edit distance option for a given string.
However, the implementation contained a bug: for a typo `-foo` with an
edit distance of 1 away from a valid option `--foo`, `findNearest`
would suggest a nearby option of `foo`. That is, the result would not
include the `--` prefix, and so was not a valid option.
Fix the bug by ensuring that the prefix string is initialized to one of
the valid prefixes for the option.
Test Plan: `check-llvm-unit`
Reviewers: v.g.vassilev, teemperor, ruiu, jroelofs, yamaguchi
Reviewed By: jroelofs
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41873
llvm-svn: 322109
This change adds the missing armv8l variant as an alias of armv8 architecture.
The issue was observed with several regressions in validation on armv8l
hardware (for instance ExecutionEngine/frem.ll failed due to lack of neon fpu).
Tested with regression testsuite passed without regression on ARM and x86_64.
Patch by Yvan Roux.
Reviewers: rengolin, rogfer01, olista01, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D41859
llvm-svn: 322098
Summary:
The idea is that it would replace
(non-Writable)MemoryBuffer::getNewMemBuffer, which is quite useless
unless you const_cast its contents to write to it (which all (both)
callers of this function were doing). This patch also fixes one of the usages in
COFFWriter. After fixing the other usage in clang, I plan to delete the old
function.
Reviewers: dblaikie, Bigcheese
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41540
llvm-svn: 322094
SCEV tracks the correspondence of created SCEV to original instruction.
However during creation of SCEV it is possible that nuw/nsw/exact flags are
lost.
As a result during expansion of the SCEV the instruction with nuw/nsw/exact
will be used where it was expected and we produce poison incorreclty.
Reviewers: sanjoy, mkazantsev, sebpop, jbhateja
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41578
llvm-svn: 322058
We have some code to try to determine how many pieces an MSF
Free Page Map is split into, and this code had an off by one
error which would cause the calculation to be incorrect when
there were exactly 4096*k + 1 blocks in an MSF file.
Original investigation and patch outline by Colden Cullen.
Differential Revision: https://reviews.llvm.org/D41742
llvm-svn: 321880
Summary:
Add a method `OptTable::findNearest`, which allows users of OptTable to
check user input for misspelled options. In addition, have llvm-mt
check for misspelled options. For example, if a user invokes
`llvm-mt /oyt:foo`, the error message will indicate that while an
option named `/oyt:` does not exist, `/out:` does.
The method ports the functionality of the `LookupNearestOption` method
from LLVM CommandLine to libLLVMOption. This allows tools like Clang
and Swift, which do not use CommandLine, to use this functionality to
suggest similarly spelled options.
As room for future improvement, the new method as-is cannot yet properly suggest
nearby "joined" options -- that is, for an option string "-FozBar", where
"-Foo" is the correct option name and "Bar" is the value being passed along
with the misspelled option, this method will calculate an edit distance of 4,
by deleting "Bar" and changing "z" to "o". It should instead calculate an edit
distance of just 1, by changing "z" to "o" and recognizing "Bar" as a
value. This commit includes a disabled test that expresses this limitation.
Test Plan: `check-llvm`
Reviewers: yamaguchi, v.g.vassilev, teemperor, ruiu, jroelofs
Reviewed By: jroelofs
Subscribers: jroelofs, llvm-commits
Differential Revision: https://reviews.llvm.org/D41732
llvm-svn: 321877
The original commit broke the builders due to a think-o in an assertion:
AsynchronousSymbolQuery's constructor needs to check the callback member
variables, not the constructor arguments.
llvm-svn: 321853
SymbolSource.
These new APIs are a first stab at tackling some current shortcomings of ORC,
especially in performance and threading support.
VSO (Virtual Shared Object) is a symbol table representing the symbol
definitions of a set of modules that behave as if they had been statically
linked together into a shared object or dylib. Symbol definitions, either
pre-defined addresses or lazy definitions, can be added and queries for symbol
addresses made. The table applies the same linkage strength rules that static
linkers do when constructing a dylib or shared object: duplicate definitions
result in errors, strong definitions override weak or common ones. This class
should improve symbol lookup speed by providing centralized symbol tables (as
compared to the findSymbol implementation in the in-tree ORC layers, which
maintain one symbol table per object file / module added).
AsynchronousSymbolQuery is a query for the addresses of a set of symbols.
Query results are returned via a callback once they become available. Querying
for a set of symbols, rather than one symbol at a time (as the current lookup
scheme does) the JIT has the opportunity to make better use of available
resources (e.g. by spawning multiple jobs to materialize the requested symbols
if possible). Returning results via a callback makes queries asynchronous, so
queries from multiple threads of JIT'd code can proceed simultaneously.
SymbolSource represents a source of symbol definitions. It is used when
adding lazy symbol definitions to a VSO. Symbol definitions can be materialized
when needed or discarded if a stronger definition is found. Materializing on
demand via SymbolSources should (eventually) allow us to remove the lazy
materializers from JITSymbol, which will in turn allow the removal of many
current error checks and reduce the number of RPC round-trips involved in
materializing remote symbols. Adding a discard function allows sources to
discard symbol definitions (or mark them as available_externally), reducing the
amount of redundant code generated by the JIT for ODR symbols.
llvm-svn: 321838
This test fails when run on the sanitizer bot, and I do not see a good
way to fix it. The existing bogus target in MachineInstrTest.cpp is only
good enough to create instructions but not sufficient to insert them into
basic blocks. The addNodeToList ilist callback dereferences the pointer
to the MachineRegisterInfo. Adding MachineRegisterInfo would also require
TargetRegisterInfo, even a minimal implementation of that would be quite
complicated. I would be glad to add this back if someone can suggest a
better way to do it.
llvm-svn: 321784
Add iterator ranges for machine instruction phis, similar to the IR-level
phi ranges added in r303964. I updated a few places to use this. Besides
general code simplification, this change will allow removing a non-upstream
change from Swift's copy of LLVM (in a better way than my previous attempt
in http://reviews.llvm.org/D19080).
https://reviews.llvm.org/D41672
llvm-svn: 321783
Currently it's not possible to access MCSubtargetInfo from a TgtMCAsmBackend.
D20830 threaded an MCSubtargetInfo reference through
MCAsmBackend::relaxInstruction, but this isn't the only function that would
benefit from access. This patch removes the Triple and CPUString arguments
from createMCAsmBackend and replaces them with MCSubtargetInfo.
This patch just changes the interface without making any intentional
functional changes. Once in, several cleanups are possible:
* Get rid of the awkward MCSubtargetInfo handling in ARMAsmBackend
* Support 16-bit instructions when valid in MipsAsmBackend::writeNopData
* Get rid of the CPU string parsing in X86AsmBackend and just use a SubtargetFeature for HasNopl
* Emit 16-bit nops in RISCVAsmBackend::writeNopData if the compressed instruction set extension is enabled (see D41221)
This change initially exposed PR35686, which has since been resolved in r321026.
Differential Revision: https://reviews.llvm.org/D41349
llvm-svn: 321692
Configuration file is read as a response file in which file names in
the nested constructs `@file` are resolved relative to the directory
where the including file resides. Lines in which the first non-whitespace
character is '#' are considered as comments and are skipped. Trailing
backslashes are used to concatenate lines in the same way as they
are used in shell scripts.
Differential Revision: https://reviews.llvm.org/D24926
llvm-svn: 321586
Configuration file is read as a response file in which file names in
the nested constructs `@file` are resolved relative to the directory
where the including file resides. Lines in which the first non-whitespace
character is '#' are considered as comments and are skipped. Trailing
backslashes are used to concatenate lines in the same way as they
are used in shell scripts.
Differential Revision: https://reviews.llvm.org/D24926
llvm-svn: 321580
InsertBinop tries to find an appropriate instruction instead of
creating a new instruction. When it checks whether instruction is
the same as we need to create it ignores nuw/nsw/exact flags.
It leads to invalid behavior when poison instruction can be used
when it was not expected. Specifically, for example Expander
expands the SCEV built for instruction
%a = add i32 %v, 1
It is possible that InsertBinop can find an instruction
% b = add nuw nsw i32 %v, 1
and will use it instead of version w/o nuw nsw.
It is incorrect.
The patch conservatively ignores all instructions with any of
poison flags installed.
Reviewers: sanjoy, mkazantsev, sebpop, jbhateja
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41576
llvm-svn: 321475
There is nothing useful that can be done with a read-only uninitialized
buffer without const_casting its contents to initialize it. A better
solution is to obtain a writable buffer
(WritableMemoryBuffer::getNewUninitMemBuffer), and then convert it to a
read-only buffer after initialization. All callers of this function have
already been updated to do this, so this function is now unused.
llvm-svn: 321257
rL319838 introduced SymbolStringPool which uses 8 byte atomics for
reference counters. On systems which do not support such atomics
natively such as MIPS32, explicitly add libatomic as one of the
libraries for SymbolStringPool's unittest.
Reviewers: lhames, beanz
Differential Revision: https://reviews.llvm.org/D41010
llvm-svn: 321225