Summary:
This introduces a new SourceMgr::FindLocForLineAndColumn method that
uses the OffsetCache in SourceMgr::SrcBuffer to do do a constant time
lookup for the line number (once the cache is populated).
Use this method in MLIR's SourceMgrDiagnosticHandler::convertLocToSMLoc,
replacing the O(n) scanning logic. This resolves a long standing TODO
in MLIR, and makes one of my usecases go dramatically faster (which is
currently producing many diagnostics in a 40MB SourceBuffer).
NFC, this is just a performance speedup and cleanup.
Reviewers: rriddle!, ftynse!
Subscribers: hiraditya, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78868
Summary: Diagnostics may be cached in the parallel diagnostic handler to preserve proper ordering. Storing the Operation as a DiagnosticArgument is problematic as the operation may be erased or changed before it finally gets printed.
Differential Revision: https://reviews.llvm.org/D77675
Summary: It is a very common user trap to think that the location printed along with the diagnostic is the same as the current operation that caused the error. This revision changes the behavior to always print the current operation, except for when diagnostics are being verified. This is achieved by moving the command line flags in IR/ to be options on the MLIRContext.
Differential Revision: https://reviews.llvm.org/D77095
Summary: This revision updates the SourceMgrDiagnosticHandler to not print the source location of a note if it is the same location as the previously printed diagnostic. This helps avoid redundancy, and potential confusion, when looking at the diagnostic output.
Differential Revision: https://reviews.llvm.org/D76787
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
It is often desirable to know where within the program that a diagnostic was emitted, without reverting to assert/unreachable which crash the program. This change adds a flag `mlir-print-stacktrace-on-diagnostic` that attaches the current stack trace as a note to every diagnostic that gets emitted.
PiperOrigin-RevId: 283996373
This causes the AsmPrinter to use a local value numbering when printing the IR, allowing for the printer to be used safely in a local context, e.g. to ensure thread-safety when printing the IR. This means that the IR printing instrumentation can also be used during multi-threading when module-scope is disabled. Operation::dump and DiagnosticArgument(Operation*) are also updated to always print local scope, as this is the most common use case when debugging.
PiperOrigin-RevId: 279988203
This simplifies defining expected-* directives when there are multiple that apply to the next or previous line. @below applies the directive to the next non-designator line, i.e. the next line that does not contain an expected-* designator. @above applies to the previous non designator line.
Examples:
// Expect an error on the next line that does not contain a designator.
// expected-remark@below {{remark on function below}}
// expected-remark@below {{another remark on function below}}
func @bar(%a : f32)
// Expect an error on the previous line that does not contain a designator.
func @baz(%a : f32)
// expected-remark@above {{remark on function above}}
// expected-remark@above {{another remark on function above}}
PiperOrigin-RevId: 276369085
This fixes a problem with current save-restore pattern of diagnostics handlers, as there may be a thread race between when the previous handler is destroyed. For example, this occurs when using multiple ParallelDiagnosticHandlers asynchronously:
Handler A
Handler B | - LifeTime - | Restore A here.
Handler C | --- LifeTime ---| Restore B after it has been destroyed.
The new design allows for multiple handlers to be registered in a stack like fashion. Handlers can return success() to signal that they have fully processed a diagnostic, or failure to propagate otherwise.
PiperOrigin-RevId: 270720625
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
This can result in index expression overflow in "Loc.getPointer() - ColumnNo"
in SourgeMgr.
loc could also be prefixed to the message additionally in this case.
PiperOrigin-RevId: 262935408
Now that Locations are attributes, they have direct access to the MLIR context. This allows for simplifying error emission by removing unnecessary context lookups.
PiperOrigin-RevId: 255112791
This will allow for locations to be used in the same contexts as attributes. Given that attributes are nullable types, the 'Location' class now represents a non-nullable wrapper around a 'LocationAttr'. This preserves the desired semantics we have for non-optional locations.
PiperOrigin-RevId: 254505278
Example:
/tmp/file_C.py:21:5: error: 'foo.bar' op attribute 'something'
raise app.UsageError('Too many command-line arguments.')
^
/tmp/file_D.py:20:3: note: called from
if len(argv) > 1:
^
/tmp/file_E.py:19:1: note: called from
def main(argv):
^
/tmp/file_F.py:24:3: note: called from
app.run(main)
^
--
PiperOrigin-RevId: 248151212
Example:
/tmp/file_C.py:17:1: error: 'foo.bar' op attribute 'something' ...
app.run(main)
^
/tmp/file_D.py:14:1: note: called from
raise app.UsageError('Too many command-line arguments.')
^
/tmp/file_E.py:12:1: note: called from
def main(argv):
^
/tmp/file_F.py:13:1: note: called from
if len(argv) > 1:
^
--
PiperOrigin-RevId: 248074804
Notes are a way to add additional context to a diagnostic, but don't really make sense as standalone diagnostics. Moving forward, notes will no longer be able to be constructed directly and must be attached to a parent Diagnostic.
Notes can be attached via `attachNote`:
auto diag = ...;
diag.attachNote() << "This is a note";
--
PiperOrigin-RevId: 246545971
The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements:
* A severity level.
* A source Location.
* A list of DiagnosticArguments that help compose and comprise the output message.
* A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc.
* Arguments can be added to the diagnostic via the stream(<<) operator.
* (In a future cl) A list of attached notes.
* These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own.
The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction.
These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics.
Simple Example:
emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits");
emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits";
--
PiperOrigin-RevId: 246526439