- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so
After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.
This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.
Differential Revision: https://reviews.llvm.org/D78773
[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB
Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS. This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary. Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.
Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library. Previously, some libraries still used
add_llvm_library. However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM. Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR
A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so. To catch these errors more directly, there's now
mlir_check_all_link_libraries.
To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.
tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067
[MLIR] Move from using target_link_libraries to LINK_LIBS
This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243
Three commits have been squashed to avoid intermediate build breakage.
In cmake, dependencies on generated files require some sophistication in the build system. At build time, files are parsed to determine which headers they depend on and these dependencies are injected into the build system. This works well with ninja, but has some constraints with the makefile generator. According to the cmake documentation, this only works reliably within the same directory.
This patch expands the usage of mlir-headers to include all generated headers and adds an mlir-generic-headers target which triggers generation of dialect-independent headers. These targets are used to express dependencies on generated headers. This is mostly handled in AddMLIR.cmake and only a few CMakeLists.txt files need to change.
Differential Revision: https://reviews.llvm.org/D79242
These libraries are distinct from other things in Analysis in that they
operate only on core IR concepts. This also simplifies dependencies
so that Dialect -> Analysis -> Parser -> IR. Previously, the parser depended
on portions of the the Analysis directory as well, which sometimes
caused issues with the way the cmake makefile generator discovers
dependencies on generated files during compilation.
Differential Revision: https://reviews.llvm.org/D79240
There were some unused CMakeFiles for Affine/IR and Affine/EDSC.
This change builds separate MLIRAffineOps and MLIRAffineEDSC libraries
using those CMakeFiles. This combination replaces the old MLIRAffine
library.
Differential Revision: https://reviews.llvm.org/D78317
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161
The interfaces themselves aren't really analyses, they may be used by analyses though. Having them in Analysis can also create cyclic dependencies if an analysis depends on a specific dialect, that also provides one of the interfaces.
Differential Revision: https://reviews.llvm.org/D75867
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
add_llvm_library and add_llvm_executable may need to create new targets with
appropriate dependencies. As a result, it is not sufficient in some
configurations (namely LLVM_BUILD_LLVM_DYLIB=on) to only call
add_dependencies(). Instead, the explicit TableGen dependencies must
be passed to add_llvm_library() or add_llvm_executable() using the DEPENDS
keyword.
Differential Revision: https://reviews.llvm.org/D74930
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior. This patch explicitly specifies a
keyword when using target_link_libraries().
Differential Revision: https://reviews.llvm.org/D75725
This interface contains the necessary components to provide the same builtin behavior that terminators have. This will be used in future revisions to remove many of the hardcoded constraints placed on successors and successor operands. The interface initially contains three methods:
```c++
// Return a set of values corresponding to the operands for successor 'index', or None if the operands do not correspond to materialized values.
Optional<OperandRange> getSuccessorOperands(unsigned index);
// Return true if this terminator can have it's successor operands erased.
bool canEraseSuccessorOperand();
// Erase the operand of a successor. This is only valid to call if 'canEraseSuccessorOperand' returns true.
void eraseSuccessorOperand(unsigned succIdx, unsigned opIdx);
```
Differential Revision: https://reviews.llvm.org/D75314
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
add_llvm_library and add_llvm_executable may need to create new targets with
appropriate dependencies. As a result, it is not sufficient in some
configurations (namely LLVM_BUILD_LLVM_DYLIB=on) to only call
add_dependencies(). Instead, the explicit TableGen dependencies must
be passed to add_llvm_library() or add_llvm_executable() using the DEPENDS
keyword.
Differential Revision: https://reviews.llvm.org/D74930
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
add_llvm_library and add_llvm_executable may need to create new targets with
appropriate dependencies. As a result, it is not sufficient in some
configurations (namely LLVM_BUILD_LLVM_DYLIB=on) to only call
add_dependencies(). Instead, the explicit TableGen dependencies must
be passed to add_llvm_library() or add_llvm_executable() using the DEPENDS
keyword.
Differential Revision: https://reviews.llvm.org/D74930
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Summary:
MLIRAnalysis depended on MLIRVectorOps
MLIRVectorOps depended on MLIRAnalysis for Loop information.
Both of these can be solved by factoring out libraries related to loop
analysis into their own library. The new MLIRLoopAnalysis might be
better off with the Loop Dialect in the future.
Reviewers: nicolasvasilache, rriddle!, mehdi_amini
Reviewed By: mehdi_amini
Subscribers: Joonsoo, vchuravy, merge_guards_bot, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73655
Summary:
This breaks a cyclic library dependency where MLIRPass used the verifier
in MLIRAnalysis, but MLIRAnalysis also contained passes used for testing.
The presence of the test passes here is archaeology, predating
test/lib/Transform.
Reviewers: rriddle
Reviewed By: rriddle
Subscribers: merge_guards_bot, mgorny, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74067
Summary:
This patch is a step towards enabling BUILD_SHARED_LIBS=on, which
builds most libraries as DLLs instead of statically linked libraries.
The main effect of this is that incremental build times are greatly
reduced, since usually only one library need be relinked in response
to isolated code changes.
The bulk of this patch is fixing incorrect usage of cmake, where library
dependencies are listed under add_dependencies rather than under
target_link_libraries or under the LINK_LIBS tag. Correct usage should be
like this:
add_dependencies(MLIRfoo MLIRfooIncGen)
target_link_libraries(MLIRfoo MLIRlib1 MLIRlib2)
A separate issue is that in cmake, dependencies between static libraries
are automatically included in dependencies. In the above example, if MLIBlib1
depends on MLIRlib2, then it is sufficient to have only MLIRlib1 in the
target_link_libraries. When compiling with shared libraries, it is necessary
to have both MLIRlib1 and MLIRlib2 specified if MLIRfoo uses symbols from both.
Reviewers: mravishankar, antiagainst, nicolasvasilache, vchuravy, inouehrs, mehdi_amini, jdoerfert
Reviewed By: nicolasvasilache, mehdi_amini
Subscribers: Joonsoo, merge_guards_bot, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73653
Use OpInterfaces to add an interface for ops defining a return type function.
This change does not use this trait in any meaningful way, I'll use it in a
follow up to generalize and unify some of the op type traits/constraints. Also,
currently the infer type function can only be manually specified in C++, that should rather be the fallback in future.
PiperOrigin-RevId: 271883746
These two operation interfaces will be used in a followup to support building a callgraph:
* CallOpInterface
- Operations providing this interface are call-like, and have a "call" target. A call target may be a symbol reference, via SymbolRefAttr, or a SSA value.
* CallableOpInterface
- Operations providing this interfaces define destinations to call-like operations, e.g. FuncOp. These operations may define any number of callable regions.
PiperOrigin-RevId: 270723300
This CL adapts the recently introduced parametric tiling to have an API matching the tiling
of AffineForOp. The transformation using stripmineSink is more general and produces imperfectly nested loops.
Perfect nesting invariants of the tiled version are obtained by selectively applying hoisting of ops to isolate perfectly nested bands. Such hoisting may fail to produce a perfect loop nest in cases where ForOp transitively depend on enclosing induction variables. In such cases, the API provides a LogicalResult return but the SimpleParametricLoopTilingPass does not currently use this result.
A new unit test is added with a triangular loop for which the perfect nesting property does not hold. For this example, the old behavior was to produce IR that did not verify (some use was not dominated by its def).
PiperOrigin-RevId: 258928309