With this a DataLayoutPass can be reused for multiple modules.
Once we have doInitialization/doFinalization, it doesn't seem necessary to pass
a Module to the constructor.
Overall this change seems in line with the idea of making DataLayout a required
part of Module. With it the only way of having a DataLayout used is to add it
to the Module.
llvm-svn: 217548
This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.
The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could). Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).
llvm-svn: 217344
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.
The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.
There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.
This pass will be used by follow-up commits that make use of @llvm.assume.
llvm-svn: 217334
This feeds AA through the IFI structure into the inliner so that
AddAliasScopeMetadata can use AA->getModRefBehavior to figure out which
functions only access their arguments (instead of just hard-coding some
knowledge of memory intrinsics). Most of the information is only available from
BasicAA; this is important for preserving alias scoping information for
target-specific intrinsics when doing the noalias parameter attribute to
metadata conversion.
llvm-svn: 216866
Don't promote byval pointer arguments when when their size in bits is
not equal to their alloc size in bits. This can happen for x86_fp80,
where the size in bits is 80 but the alloca size in bits in 128.
Promoting these types can break passing unions of x86_fp80s and other
types.
Patch by Thomas Jablin!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D5057
llvm-svn: 216693
Adding, removing, or changing non-pack parameters can change the ABI
classification of pack parameters. Clang and other frontends encode the
classification in the IR of the call site, but the callee side
determines it dynamically based on the number of registers consumed so
far. Changing the prototype affects the number of registers consumed
would break such code.
Dead argument elimination performs a similar task and already has a
similar check to avoid this problem.
Patch by Thomas Jablin!
llvm-svn: 216421
GlobalDCE deletes global vars and updates their initializers to nullptr
while leaving underlying constants to be cleaned up later by its uses.
The clean up may never happen, fix this by forcing it every time it's
safe to destroy constants.
Final patch by Rafael Espindola
http://reviews.llvm.org/D4931
<rdar://problem/17523868>
llvm-svn: 216390
attribute and function argument attribute synthesizing and propagating.
As with the other uses of this attribute, the goal remains a best-effort
(no guarantees) attempt to not optimize the function or assume things
about the function when optimizing. This is particularly useful for
compiler testing, bisecting miscompiles, triaging things, etc. I was
hitting specific issues using optnone to isolate test code from a test
driver for my fuzz testing, and this is one step of fixing that.
llvm-svn: 215538
GlobalOpt didn't know how to simulate InsertValueInst or
ExtractValueInst. Optimizing these is pretty straightforward.
N.B. This came up when looking at clang's IRGen for MS ABI member
pointers; they are represented as aggregates.
llvm-svn: 215184
This swaps the order of the loop vectorizer and the SLP/BB vectorizers. It is disabled by default so we can do performance testing - ideally we want to change to having the loop vectorizer running first, and the SLP vectorizer using its leftovers instead of the other way around.
llvm-svn: 214963
This is mostly a cleanup, but it changes a fairly old behavior.
Every "real" LTO user was already disabling the silly internalize pass
and creating the internalize pass itself. The difference with this
patch is for "opt -std-link-opts" and the C api.
Now to get a usable behavior out of opt one doesn't need the funny
looking command line:
opt -internalize -disable-internalize -internalize-public-api-list=foo,bar -std-link-opts
llvm-svn: 214919
Ugh. Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though. (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)
Create a new tool called llvm-uselistorder to use for verifying use-list
order. For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.
This might be a better way to test use-list order anyway.
Part of PR5680.
llvm-svn: 213957
The dragonegg buildbot (and others?) started failing after
r213945/r213946 because `llvm-as` wasn't linking in the bitcode reader.
I think moving the verify functions to the same file as the verify pass
should fix the build. Adding a command-line option for maintaining
use-list order in assembly as a drive-by to prevent warnings about
unused static functions.
llvm-svn: 213947
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.
- The utility functions live in lib/IR/UseListOrder.cpp.
- Moved (and renamed) the command-line option to enable writing
use-lists, so that this pass can return early if the use-list orders
aren't being serialized.
It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype. I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.
This is part of PR5680.
llvm-svn: 213945
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
llvm-svn: 213864
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
llvm-svn: 213859
While the subprogram map cache used by Dead Argument Elimination works
there, I made a mistake when reusing it for Argument Promotion in
r212128 because ArgPromo may transform functions more than once whereas
DAE transforms each function only once, removing all the dead arguments
in one go.
To address this, ensure that the map is updated after each argument
promotion.
In retrospect it might be a little wasteful to create a map of all
subprograms when only handling a single CGSCC, but the alternative is
walking the debug info for each function in the CGSCC that gets updated.
It's not clear to me what the right tradeoff is there, but since the
current tradeoff seems to be working OK (and the code to keep things
updated is very cheap), let's stick with that for now.
llvm-svn: 213805
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.
llvm-svn: 213396
isDereferenceablePointer should not give up upon encountering any bitcast. If
we're casting from a pointer to a larger type to a pointer to a small type, we
can continue by examining the bitcast's operand. This missing capability
was noted in a comment in the function.
In order for this to work, isDereferenceablePointer now takes an optional
DataLayout pointer (essentially all callers already had such a pointer
available). Most code uses isDereferenceablePointer though
isSafeToSpeculativelyExecute (which already took an optional DataLayout
pointer), and to enable the LICM test case, LICM needs to actually provide its DL
pointer to isSafeToSpeculativelyExecute (which it was not doing previously).
llvm-svn: 212686
This reverts commit 5b55a47e94e28fbb56d0cd5d72c3db9105c15b4c.
A test case was found to crash after this was applied. I'll file a bug to track fixing this with the test case needed.
llvm-svn: 212550
This is useful for functions that are not actually available externally but
referenced by a vtable of some kind. Clang emits functions like this for the MS
ABI.
PR20182.
llvm-svn: 212337
Exposes more constant globals that can be removed by
the global optimizer. A specific example is the removal
of the static global block address array in
clang/test/CodeGen/indirect-goto.c. This change impacts only
lower optimization levels. With LTO interprocedural
const prop runs already before global opt.
llvm-svn: 212284