Currently, we create a G_CONSTANT for every "synthetic" integer
constant operand (for instance, for the G_GEP offset).
Instead, share the G_CONSTANTs we might have created by going through
the ValueToVReg machinery.
When we're emitting synthetic constants, we do need to get Constants from
the context. One could argue that we shouldn't modify the context at
all (for instance, this means that we're going to use a tad more memory
if the constant wasn't used elsewhere), but constants are mostly
harmless. We currently do this for extractvalue and all.
For constant fcmp, this does mean we'll emit an extra COPY, which is not
necessarily more optimal than an extra materialized constant.
But that preserves the current intended design of uniqued G_CONSTANTs,
and the rematerialization problem exists elsewhere and should be
resolved with a single coherent solution.
llvm-svn: 297875
computeKnownBits didn't handle fp_to_fp16 to report
the high bits as 0. ARM maps the generic node to an instruction
that does not modify the high bits of the register, so introduce
a target node where the high bits are known 0.
llvm-svn: 297873
If we got unlucky with register allocation and actual constpool placement, we
could end up producing a tTBB_JT with an index that's already been clobbered.
Technically, we might be able to fix this situation up with a MOV, but I think
the constant islands pass is complex enough without having to deal with more
weird edge-cases.
llvm-svn: 297871
Now that we preserve the IR layout, we would end up with all the newly
synthesized switch comparison blocks at the end of the function.
Instead, use a hopefully more reasonable layout, with the comparison
blocks immediately following the switch comparison blocks.
llvm-svn: 297869
It makes the output function layout more predictable; the layout has
an effect on performance, we don't want it to be at the mercy of the
translator's visitation order and such.
The predictable output is also easier to digest.
getOrCreateBB isn't appropriately named anymore, as it never needs to
create anything. Rename it and extract the MBB creation logic out of it.
A couple tests were sensitive to the order. Update them.
llvm-svn: 297868
Using the module ID here is wrong for a couple of reasons:
1) The module ID is not persisted, so we can end up with different
object file contents given the same input file (for example if the same
file is accessed via different paths).
2) With ThinLTO the module ID field may contain the path to a bitcode file,
which is incorrect, as the .file argument is supposed to contain the path to
a source file.
Differential Revision: https://reviews.llvm.org/D30584
llvm-svn: 297853
mfvrd and mffprd are both alias to mfvrsd.
This patch enables correct parsing of the aliases, but we still emit a mfvrsd.
Committing on behalf of brunoalr (Bruno Rosa).
Differential Revision: https://reviews.llvm.org/D29177
llvm-svn: 297849
Reduced from a mixture of PR32273 and David Green's test cases showing SelectionDAG::ComputeNumSignBits not correctly handling BUILD_VECTOR implicit truncation of inputs.
llvm-svn: 297847
This patch adds support for recognizing more patterns to match to DEXT and
CINS instructions.
It finds cases where multiple instructions could be replaced with a single
DEXT or CINS instruction.
For example, for the following:
define i64 @dext_and32(i64 zeroext %a) {
entry:
%and = and i64 %a, 4294967295
ret i64 %and
}
instead of generating:
0000000000000088 <dext_and32>:
88: 64010001 daddiu at,zero,1
8c: 0001083c dsll32 at,at,0x0
90: 6421ffff daddiu at,at,-1
94: 03e00008 jr ra
98: 00811024 and v0,a0,at
9c: 00000000 nop
the following gets generated:
0000000000000068 <dext_and32>:
68: 03e00008 jr ra
6c: 7c82f803 dext v0,a0,0x0,0x20
Cases that are covered:
DEXT:
1. and $src, mask where mask > 0xffff
2. zext $src zero extend from i32 to i64
CINS:
1. and (shl $src, pos), mask
2. shl (and $src, mask), pos
3. zext (shl $src, pos) zero extend from i32 to i64
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D30464
llvm-svn: 297832
Enable the selection of the 64-bit signed multiply accumulate
instructions which operate on 16-bit operands. These are enabled for
ARMv5TE onwards for ARM and for V6T2 and other DSP enabled Thumb
architectures.
Differential Revision: https://reviews.llvm.org/D30044
llvm-svn: 297809
Summary: D25742 improved the precision of debug locations for PGO by removing debug locations from common tail when tail-merging. However, if identical insturctions that are merged into a common tail have the same debug locations, there's no need to remove them. This patch creates a merged debug location of identical instructions across SameTails and assign it to the instruction in the common tail, so that the debug locations are maintained if they are same across identical instructions.
Reviewers: aprantl, probinson, MatzeB, rob.lougher
Reviewed By: aprantl
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D30226
llvm-svn: 297805
On MachO platforms that use subsections-via-symbols dead code stripping will
drop prefix data. Unfortunately there is no great way to convey the relationship
between a function and its prefix data to the linker. We are forced to use a bit
of a hack: we give the prefix data it’s own symbol, and mark the actual function
entry an .alt_entry.
Patch by Moritz Angermann!
Differential Revision: https://reviews.llvm.org/D30770
llvm-svn: 297804
Summary:
<1 x Ty> is not a legal vector type in LLT, we shouldn’t build G_MERGE_VALUES
instruction for them.
Reviewers: qcolombet, aditya_nandakumar, dsanders, t.p.northover, ab, javed.absar
Reviewed By: qcolombet
Subscribers: dberris, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D30948
llvm-svn: 297792
Summary:
Adds a new kind of MachineOperand: MO_Placeholder.
This operand must not appear in the MIR and only exists as a way of
creating an 'uninitialized' operand until a matcher function overwrites it.
Depends on D30046, D29712
Reviewers: t.p.northover, ab, rovka, aditya_nandakumar, javed.absar, qcolombet
Reviewed By: qcolombet
Subscribers: dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D30089
llvm-svn: 297782
Reduced version of D26357 - based on the discussion on llvm-dev about canonicalization of UMIN/UMAX/SMIN/SMAX as well as ABS I've reduced that patch to just the ABS ISD node (with x86/sse support) to improve basic combines and lowering.
ARM/AArch64, Hexagon, PowerPC and NVPTX all have similar instructions allowing us to make this a generic opcode and move away from the hard coded tablegen patterns which makes it tricky to match more complex patterns.
At the moment this patch doesn't attempt legalization as we only create an ABS node if its legal/custom.
Differential Revision: https://reviews.llvm.org/D29639
llvm-svn: 297780
Create nodes for smulwb and smulwt and move their selection from
DAGToDAG to DAG combine. smlawb and smlawt can then be selected
using tablegen. Added some helper functions to detect shift patterns
as well as a wrapper around SimplifyDemandBits. Added a couple of
extra tests.
Differential Revision: https://reviews.llvm.org/D30708
llvm-svn: 297716
Each Calling convention (CC) defines a static list of registers that should be preserved by a callee function. All other registers should be saved by the caller.
Some CCs use additional condition: If the register is used for passing/returning arguments – the caller needs to save it - even if it is part of the Callee Saved Registers (CSR) list.
The current LLVM implementation doesn’t support it. It will save a register if it is part of the static CSR list and will not care if the register is passed/returned by the callee.
The solution is to dynamically allocate the CSR lists (Only for these CCs). The lists will be updated with actual registers that should be saved by the callee.
Since we need the allocated lists to live as long as the function exists, the list should reside inside the Machine Register Info (MRI) which is a property of the Machine Function and managed by it (and has the same life span).
The lists should be saved in the MRI and populated upon LowerCall and LowerFormalArguments.
The patch will also assist to implement future no_caller_saved_regsiters attribute intended for interrupt handler CC.
Differential Revision: https://reviews.llvm.org/D28566
llvm-svn: 297715
When checking if chain node is foldable, make sure the intermediate nodes have a single use across all results not just the result that was used to reach the chain node.
This recovers a test case that was severely broken by r296476, my making sure we don't create ADD/ADC that loads and stores when there is also a flag dependency.
llvm-svn: 297698
Recommiting with compiler time improvements
Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 297695
rL230225 made the assumption that only the lower 32-bits of an MMX register load is used as a shift value, when in fact the whole 64-bits are reloaded and treated as a i64 to determine the shift value.
This patch reverts rL230225 to ensure that the whole 64-bits of memory are folded and ensures that the upper 32-bit are zero'd for cases where the shift value has come from a scalar source.
Found during fuzz testing.
Differential Revision: https://reviews.llvm.org/D30833
llvm-svn: 297667
I am leaving the code in clang which filters mxcsr from the clobber list because that is still technically correct and will be useful again when the MXCSR register is reintroduced.
llvm-svn: 297664
This commit adds tail call support to the MachineOutliner pass. This allows
the outliner to insert jumps rather than calls in areas where tail calling is
possible. Outlined tail calls include the return or terminator of the basic
block being outlined from.
Tail call support allows the outliner to take returns and terminators into
consideration while finding candidates to outline. It also allows the outliner
to save more instructions. For example, in the X86-64 outliner, a tail called
outlined function saves one instruction since no return has to be inserted.
llvm-svn: 297653
For AVX-512 we force the input to zero if the input is undef or the mask is all ones to break an execution dependency. This patch brings the same behavior to AVX2.
llvm-svn: 297652
We were already forcing undef inputs to become a zero vector, this now catches an all ones mask too.
Ideally we'd use undef and let execution dep fix handle picking the best register/clearance for the undef, but I don't think it can handle the early clobber today.
llvm-svn: 297651
We used to hit an unreachable in getRegBankFromRegClass when dealing with the
stack pointer. This commit adds support for the GPRsp reg class.
llvm-svn: 297621
This reverts r297596.
There were other issues that were making this not work that have been fixed now. Reverting this results in a more accurate table.
llvm-svn: 297602
This exposed that we have several intrinsic instructions that have identical TSFlags to other instructions. We should merge their patterns and kill of the duplicate. I'll fix that in a follow up patch.
llvm-svn: 297596
The immediate should be 1 or 2, not 0 or 1. This was found while adding bounds checking to clang. In fact the existing clang builtin test failed if we ran it all the way to assembly.
llvm-svn: 297591
I noticed unnecessary 'sbb' instructions in D30472 and while looking at 'ptest' codegen recently.
This happens because we were transforming any 'setb' - even when we only wanted a single-bit result.
This patch moves those transforms under visitAdd/visitSub, so we we're only creating sbb/adc when it
is a win. I don't know why we need a SETCC_CARRY node type, but I'm not proposing to change that
existing behavior in this patch.
Also, I'm skeptical that sbb/adc are a win for all micro-arches, so I added comments to the test files
where this transform still fires.
The test changes here are all cases where we no longer produce sbb/adc. Avoiding partial register
stalls (generating an xor to clear a register) is not handled in some cases, but that's a separate
issue.
Differential Revision: https://reviews.llvm.org/D30611
llvm-svn: 297586
Summary:
A53 scheduler causes an assertion failure on all CRC instructions:
include/llvm/CodeGen/MachineInstr.h:280: const llvm::MachineOperand
&llvm::MachineInstr::getOperand(unsigned int) const: Assertion `i <
getNumOperands() && "getOperand() out of range!"' failed.
The case statements corresponding to CRC instructions are incorrect and should
be removed.
Also adding a testcase while on this.
Reviewers: t.p.northover, javed.absar, apazos, rengolin
Reviewed By: rengolin
Subscribers: evandro, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30274
llvm-svn: 297582
I'm pretty sure there are more problems lurking here. But I think this fixes PR32241.
I've added the test case from that bug and added asserts that will fail if we ever try to copy between high registers and mask registers again.
llvm-svn: 297574
Without SSE41 (pextrb) we currently extract byte elements from a vector by spilling to stack and reloading the byte.
This patch is an initial attempt at using MOVD/PEXTRW to extract the relevant DWORD/WORD from the vector and then shift+truncate to collect the correct byte.
Extraction of multiple bytes this way would result in code bloat, but as explained in the patch we could probably afford to be more aggressive with the supported extractions before again falling back on spilling - possibly through counting the number of extracts and which DWORD/WORD they originate?
Differential Revision: https://reviews.llvm.org/D29841
llvm-svn: 297568
Since v_max_f32_e64/v_max_f16_e64 can be folded if the target
instruction supports the clamp bit, we also need to maintain
modifiers when converting v_mac to v_mad.
This fixes a rendering issue with Dirt Rally because a v_mac
instruction with the clamp bit set was converted to a v_mad
but that bit was lost during the conversion.
Fixes: e184e01dd79 ("AMDGPU: Fold FP clamp as modifier bit")
Patch by Samuel Pitoiset <samuel.pitoiset@gmail.com>
llvm-svn: 297556
This method inverts the Reason field of a scheduling candidate.
It does right comparison between RegCritical and RegExcess, but
everything else is broken. In fact it can prefer less strong reason
such as Weak over RegCritical because Weak > -RegCritical.
The CandReason enum is properly sorted, so just remove artificial
ranking.
Differential Revision: https://reviews.llvm.org/D30557
llvm-svn: 297536
This only requires a 64-bit memory source, not the whole 128-bits. But the 128-bit case is still supported via X86InstrInfo::foldMemoryOperandImpl
llvm-svn: 297523
SelectionDAG::ComputeNumSignBits is poor at build_vector handling, meaning that we can't see that all the vXi64 sources are in fact sign extended i32 or smaller.
llvm-svn: 297486
Summary:
Depends on D30379
This improves the state of things for the sub class of operation.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30436
llvm-svn: 297482
If we are transferring MMX registers to XMM for conversion we could use the MMX equivalents (CVTPI2PD + CVTPI2PS) without affecting rounding/exceptions etc.
llvm-svn: 297481
Summary: As per title. This is extracted from D29872 and I threw SADDO in.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30379
llvm-svn: 297479
If we are transferring XMM conversion results to MMX registers we could use the MMX equivalents (CVTPD2PI/CVTTPD2PI + CVTPS2PI/CVTTPS2PI) with affecting rounding/expections etc.
llvm-svn: 297476
This patches teaches the MIPS backend to accept more values for constant
splats. Previously, only 10 bit signed immediates or values that could be
loaded using an ldi.[bhwd] instruction would be acceptted. This patch relaxes
that constraint so that any constant value that be splatted is accepted.
As a result, the constant pool is used less for vector operations, and the
suite of bit manipulation instructions b(clr|set|neg)i can now be used with
the full range of their immediate operand.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30640
llvm-svn: 297457
same as already done for ARM and Thumb2.
Reviewers: jmolloy, rogfer01, efriedma
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30400
llvm-svn: 297443
Summary: This essentially does the same transform as for ADC.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30417
llvm-svn: 297416
- Fix the insertion point, which occasionally could have been incorrect.
- Avoid creating multiple bitsplits with the same operands, if an old one
could be reused.
llvm-svn: 297414
The good reason to do this is that static allocas are pretty simple to handle
(especially at -O0) and avoiding tracking DBG_VALUEs throughout the pipeline
should give some kind of performance benefit.
The bad reason is that the debug pipeline is an unholy mess of implicit
contracts, where determining whether "DBG_VALUE %reg, imm" actually implies a
load or not involves the services of at least 3 soothsayers and the sacrifice
of at least one chicken. And it still gets it wrong if the variable is at SP
directly.
llvm-svn: 297410
Summary: This essentially does the same transform as for SUBC.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30437
llvm-svn: 297404
I previously removed the T2XtPk feature from the ARM backend, but it
looks like I missed some of the tests that were using the feature.
Differential Revision: https://reviews.llvm.org/D30778
llvm-svn: 297386
As discussed in the review thread for rL297026, this is actually 2 changes that
would independently fix all of the test cases in the patch:
1. Return undef in FoldConstantArithmetic for div/rem by 0.
2. Move basic undef simplifications for div/rem (simplifyDivRem()) before
foldBinopIntoSelect() as a matter of efficiency.
I will handle the case of vectors with any zero element as a follow-up. That change
is the DAG sibling for D30665 + adding a check of vector elements to FoldConstantVectorArithmetic().
I'm deleting the test for PR30693 because it does not test for the actual bug any more
(dangers of using bugpoint).
Differential Revision:
https://reviews.llvm.org/D30741
llvm-svn: 297384
The fix introduces segfaults and clobbers the value to be stored when
the atomic sequence loops.
Revert "[Target/MIPS] Kill dead code, no functional change intended."
This reverts commit r296153.
Revert "Recommit "[mips] Fix atomic compare and swap at O0.""
This reverts commit r296134.
llvm-svn: 297380
Fix a machine verifier issue where a instruction was using a invalid
register. The return pseudo is expanded and has the return address
register added to it. The return register may have been spuriously
mark as killed earlier.
This partially resolves PR/27458
Thanks to Quentin Colombet for reporting the issue!
llvm-svn: 297372
When extracting a bitfield from the high register in a register pair,
the final offset should be relative to the high register (for 32-bit
extracts).
llvm-svn: 297288
Summary: By using reg_nodbg_empty() to determine if a function can be
treated as a leaf function or not, we miss the case when the register
pair L0_L1 is used but not L0 by itself. This has the effect that
use_all_i32_regs(), a test in reserved-regs.ll which tries to use all
registers, gets treated as a leaf function.
Reviewers: jyknight, venkatra
Reviewed By: jyknight
Subscribers: davide, RKSimon, sepavloff, llvm-commits
Differential Revision: https://reviews.llvm.org/D27089
llvm-svn: 297285
After inspection, it's an UB in our code base. Someone cast a var-arg
function pointer to a non-var-arg one. :/
Re-commit r296771 to continue testing on the patch.
Sorry for the trouble!
llvm-svn: 297256
If there is only one successor, and that successor only
has one predecessor the wait can obviously be delayed until
uses or the end of the next block. This avoids code quality
regressions when there are trivial fallthrough blocks inserted
for structurization.
llvm-svn: 297251
This helps in cases involving bitfields where an AND is exposed by
legalization.
Differential Revision: https://reviews.llvm.org/D30472
llvm-svn: 297249
We were calculating incorrect extract/insert offsets by trying to be too
tricksy with min/max. It's clearer to just split the logic up into "register
starts before this segment" vs "after".
llvm-svn: 297226
Some intrinsics take metadata parameters. These all need custom
handling of some form, and cannot possibly be lowered generically to
G_INTRINSIC calls with vreg operands.
Reject them, instead of hitting an assert later in getOrCreateVReg.
llvm-svn: 297209
When we translate a no-op (same type) bitcast, we try to be clever and
only emit a COPY if we already assigned a vreg to the defined value.
However, when we didn't, we tried to assign to a reference into the
ValToVReg DenseMap, even though the RHS of the assignment
(getOrCreateVReg) could potentially grow that DenseMap, invalidating the
reference.
Avoid that by getting the source vreg first.
I audited the rest of the translator; this is the only tricky case.
The test is quite unwieldy, as the problem is caused by the DenseMap
growing, which happens after the 47th mapped value.
llvm-svn: 297208
For vector operands, the `select` instruction supports both vector and
non-vector conditions. The MIR builder had an overly restrictive
assertion, that only accepted vector conditions for vector selects
(in effect implementing ISD::VSELECT).
Make it possible to express the full range of G_SELECTs.
llvm-svn: 297207
When computing the mapping for non-generic instructions, we skipped
%noreg operands, because we can't always reason about their banks.
Also skip them when applying the mapping. Otherwise, we could end
up with mappings that we can't apply.
While there, duplicate an assert to distinguish between the two
error conditions.
llvm-svn: 297201
When a dbg_value has a constant operand that isn't representable in MI,
there isn't much we can do. Use %noreg (0) for those situations.
This matches the SelectionDAG behavior.
llvm-svn: 297200
We cannot leave the identity copies 'select true, arg, undef' that this pass
inserts for arguments to simplify handling of values on swifterror arguments.
swifterror arguments have restrictions on their uses.
rdar://30839288
llvm-svn: 297197
Broadcom Vulcan is now Cavium ThunderX2T99.
LLVM Bugzilla: http://bugs.llvm.org/show_bug.cgi?id=32113
Minor fixes for the alignments of loops and functions for
ThunderX T81/T83/T88 (better performance).
Patch was tested with SpecCPU2006.
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D30510
llvm-svn: 297190
The original patch r296865 was reverted as it broke the chromium builds for
Android https://bugs.llvm.org/show_bug.cgi?id=32134, this patch reapplies
r296865 with a fix to make sure it doesn't cause the build regression.
The problem was that intrinsic selection on int_arm_get_fpscr was failing in
ISel this was because the code to manually select this intrinsic still thought
it was the version with no side-effects (INTRINSIC_WO_CHAIN) which is wrong as
it doesn't semantically match the definition in the tablegen code which says it
does have side-effects, I've fixed this by updating the intrinsic type to
INTRINSIC_W_CHAIN (has side-effects). I've also added a test for this based on
Hans original reproducer.
Differential Revision: https://reviews.llvm.org/D30645
llvm-svn: 297137
Summary: Previously, it had always been materialized as a push/pop sequence.
Reviewers: labrinea, jroelofs
Reviewed By: jroelofs
Subscribers: llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30648
llvm-svn: 297134
evex2vex pass defines 2 tables which maps EVEX instructions to their VEX identical when possible. Adding all missing entries.
Differential Revision: https://reviews.llvm.org/D30501
llvm-svn: 297126
This reverts commit r296771.
We found some wide spread test failures internally. I'm working on a
testcase. Politely revert the patch in the mean time. :)
llvm-svn: 297124
A bit more painful than G_INSERT because it was more widely used, but this
should simplify the handling of extract operations in most locations.
llvm-svn: 297100
Fixed the asan bot failure which led to the last commit of the outliner being reverted.
The change is in lib/CodeGen/MachineOutliner.cpp in the SuffixTree's constructor. LeafVector
is no longer initialized using reserve but just a standard constructor.
llvm-svn: 297081
This patch extends the current functionality of the AArch64 redundant copy
elimination pass to handle CMN instructions as well as a shifted
immediates.
Differential Revision: https://reviews.llvm.org/D30576.
llvm-svn: 297078
If a block has non-analyzable branches, the listed successors don't need
to add up to one. For example, if a block has a conditional tail call,
that tail call will not have a corresponding successor in the successor
list, but will still be a possible branch.
Differential Revision: https://reviews.llvm.org/D30556
llvm-svn: 297054
Before, we were producing G_INSERT instructions that were actually closer to a
cast or even a COPY when both input and output sizes are the same. This doesn't
really make sense and means that everything interpreting a G_INSERT also has to
handle all these kinds of casts.
So now we detect these degenerate cases and emit real casts instead.
llvm-svn: 297051
Use the store size of the argument type, which will be a byte-sized
quantity, rather than dividing the size in bits by 8.
Fixes PR32136 and re-enables copy elision from i64 arguments.
Reverts the workaround in from r296950.
llvm-svn: 297045
Now that G_INSERT instructions can only insert one register, this code was
overly general. In another direction it didn't handle registers that crossed
split boundaries properly, which needed to be fixed.
llvm-svn: 297042
Merge the tail block into the loop in cases where the main loop body
exits early, subject to profitability constraints. This will coalesce
the loop body into fewer blocks.
For example:
loop: loop:
// loop body // loop body
if (...) jump exit --> // more body
more: if (...) jump exit
// more body jump loop
jump loop
llvm-svn: 297033
The code in updateDeadFlags removed unnecessary <dead> flags, but there
can be cases where such a flag is not set, and yet a register has become
dead. For example, if a mux with identical inputs is replaced with a COPY,
the predicate register may no longer be used after that.
llvm-svn: 297032
Refactoring of duplicated code and more fixes to follow.
This is motivated by the post-commit comments for r296699:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20170306/435182.html
Ie, we can crash if we're missing obvious simplifications like this that
exist in the IR simplifier or if these occur later than expected.
The x86 change for non-splat division shows a potential opportunity to improve
vector codegen: we assumed that since only one lane had meaningful results, we
should do the math in scalar. But that means moving back and forth from vector
registers.
llvm-svn: 297026
These are not x86-specific, but the problem is not visible for all targets
because it is masked by other transforms. These can lead to compiler crashes.
llvm-svn: 297017
Summary:
Functions with the "xray-log-args" attribute will have a special XRay sled kind
emitted, for compiler-rt to copy any call arguments to your logging handler.
For practical and performance reasons, only the first argument is supported, and
only up to 64 bits.
Reviewers: dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29702
llvm-svn: 296998
As described on PR31712, we miss a variety of legalization combines because we lower these to X86ISD::VSEXT/VZEXT despite them having the same functionality. This patch makes 128-bit (SSE41) SIGN/ZERO_EXTEND_VECTOR_IN_REG ops legal, adds the necessary tablegen plumbing and uses a helper 'getExtendInVec' to decide when to use SIGN/ZERO_EXTEND_VECTOR_IN_REG or VSEXT/VZEXT.
We're missing a couple of shuffle combines that will be added in a future patch for review.
Later patches can then support the AVX2 cases as a mixture of SIGN/ZERO_EXTEND and SIGN/ZERO_EXTEND_VECTOR_IN_REG, and then finally deal with the AVX512 cases.
Differential Revision: https://reviews.llvm.org/D30549
llvm-svn: 296985
The larger goal is to move the ADC/SBB transforms currently in
combineX86SetCC() to combineAddOrSubToADCOrSBB() because we're
creating ADC/SBB in lots of places where we shouldn't.
This was intended to be an NFC change, but avx-512 has something
strange going on. It doesn't seem like any of the affected tests
should really be using SET+TEST or ADC; a simple ADD could replace
several instructions. But that's another bug...
llvm-svn: 296978
select Cond, C +/- 1, C --> add(ext Cond), C -- with a target hook.
This is part of the ongoing process to obsolete D24480. The motivation is to
canonicalize to select IR in InstCombine whenever possible, so we need to have a way to
undo that easily in codegen.
PowerPC is an obvious winner for this kind of transform because it has fast and complete
bit-twiddling abilities but generally lousy conditional execution perf (although this might
have changed in recent implementations).
x86 also sees some wins, but the effect is limited because these transforms already mostly
exist in its target-specific combineSelectOfTwoConstants(). The fact that we see any x86
changes just shows that that code is a mess of special-case holes. We may be able to remove
some of that logic now.
My guess is that other targets will want to enable this hook for most cases. The likely
follow-ups would be to add value type and/or the constants themselves as parameters for the
hook. As the tests in select_const.ll show, we can transform any select-of-constants to
math/logic, but the general transform for any 2 constants needs one more instruction
(multiply or 'and').
ARM is one target that I think may not want this for most cases. I see infinite loops there
because it wants to use selects to enable conditionally executed instructions.
Differential Revision: https://reviews.llvm.org/D30537
llvm-svn: 296977
Long ago (2010 according to svn blame), combineShuffle probably needed to prevent the accidental creation of illegal i64 types but there doesn't appear to be any combines that can cause this any more as they all have their own legality checks.
Differential Revision: https://reviews.llvm.org/D30213
llvm-svn: 296966
Summary:
When replacing a SDValue, we should remove the replaced value from
SoftenedFloats (and possibly the other maps as well?).
When we revisit a Node because it needs analyzing again, we have to
remove all result values from SoftenedFloats (and possibly other maps?).
This fixes the fp128 test failures with expensive checks for X86.
I think we probably should also remove the values from the other maps
(PromotedIntegers and so on), let me know what you think.
Reviewers: baldrick, bogner, davidxl, ab, arsenm, pirama, chh, RKSimon
Reviewed By: chh
Subscribers: danalbert, wdng, srhines, hfinkel, sepavloff, llvm-commits
Differential Revision: https://reviews.llvm.org/D29265
llvm-svn: 296964
This fixes cases where i1 types were not properly legalized yet and lead
to the creating of 0-sized stack slots.
This fixes http://llvm.org/PR32136
llvm-svn: 296950
These are simplified variants of the current G_SEQUENCE and G_EXTRACT, which
assume the individual parts will be contiguous, homogeneous, and occupy the
entirity of the larger register. This makes reasoning about them much easer
since you only have to look at the first register being merged and the result
to know what the instruction is doing.
I intend to gradually replace all uses of the more complicated sequence/extract
with these (or single-element insert/extracts), and then remove the older
variants. For now we start with legalization.
llvm-svn: 296921
The intrinsics __builtin_arm_get_fpscr and __builtin_arm_set_fpscr read and
write to the fpscr (Floating-Point Status and Control Register) register.
A bug exists in the __builtin_arm_get_fpscr intrinsic definition in llvm which
treats this intrinsic as a IntroNoMem which means it's not a memory access and
doesn't have any other side-effects. Having this property on this intrinsic
means that various optimizations can be done on this such as common
sub-expression elimination with other reads. This can cause issues if there has
been write to this register, e.g.
void foo(int *p) {
p[0] = __builtin_arm_get_fpscr();
__builtin_arm_set_fpscr(1);
p[1] = __builtin_arm_get_fpscr();
}
in the above example the second read is currently CSE'd into the first read,
this is because llvm isn't aware that the write done by __builtin_arm_set_fpscr
effects the same register that __builtin_arm_get_fpscr reads from, to fix this
problem I've removed the property IntrNoMem so that __builtin_arm_get_fpscr is
treated as a memory access.
Differential Revision: https://reviews.llvm.org/D30542
llvm-svn: 296865
This patch causes compile times for some patterns to explode. I have
a (large, unreduced) test case that slows down by more than 20x and
several test cases slow down by 2x. I'm sending some of the test cases
directly to Nirav and following up with more details in the review log,
but this should unblock anyone else hitting this.
llvm-svn: 296862
VZEROUPPER should not be issued on Knights Landing (KNL), but on Skylake-avx512 it should be.
Differential Revision: https://reviews.llvm.org/D29874
llvm-svn: 296859
For chains of triangles with small join blocks that can be tail duplicated, a
simple calculation of probabilities is insufficient. Tail duplication
can be profitable in 3 different ways for these cases:
1) The post-dominators marked 50% are actually taken 56% (This shrinks with
longer chains)
2) The chains are statically correlated. Branch probabilities have a very
U-shaped distribution.
[http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
If the branches in a chain are likely to be from the same side of the
distribution as their predecessor, but are independent at runtime, this
transformation is profitable. (Because the cost of being wrong is a small
fixed cost, unlike the standard triangle layout where the cost of being
wrong scales with the # of triangles.)
3) The chains are dynamically correlated. If the probability that a previous
branch was taken positively influences whether the next branch will be
taken
We believe that 2 and 3 are common enough to justify the small margin in 1.
The code pre-scans a function's CFG to identify this pattern and marks the edges
so that the standard layout algorithm can use the computed results.
llvm-svn: 296845
Summary:
Currently, when 't1: i1 = setcc t2, t3, cc' followed by 't4: i1 = xor t1, Constant:i1<-1>' is folded into 't5: i1 = setcc t2, t3 !cc', SDLoc of newly created SDValue 't5' follows SDLoc of 't4', not 't1'. However, as the opcode of newly created SDValue is 'setcc', it make more sense to take DebugLoc from 't1' than 't4'. For the code below
```
extern int bar();
extern int baz();
int foo(int x, int y) {
if (x != y)
return bar();
else
return baz();
}
```
, following is the bitcode representation of 'foo' at the end of llvm-ir level optimization:
```
define i32 @foo(i32 %x, i32 %y) !dbg !4 {
entry:
tail call void @llvm.dbg.value(metadata i32 %x, i64 0, metadata !9, metadata !11), !dbg !12
tail call void @llvm.dbg.value(metadata i32 %y, i64 0, metadata !10, metadata !11), !dbg !13
%cmp = icmp ne i32 %x, %y, !dbg !14
br i1 %cmp, label %if.then, label %if.else, !dbg !16
if.then: ; preds = %entry
%call = tail call i32 (...) @bar() #3, !dbg !17
br label %return, !dbg !18
if.else: ; preds = %entry
%call1 = tail call i32 (...) @baz() #3, !dbg !19
br label %return, !dbg !20
return: ; preds = %if.else, %if.then
%retval.0 = phi i32 [ %call, %if.then ], [ %call1, %if.else ]
ret i32 %retval.0, !dbg !21
}
!14 = !DILocation(line: 5, column: 9, scope: !15)
!16 = !DILocation(line: 5, column: 7, scope: !4)
```
As you can see, in 'entry' block, 'icmp' instruction and 'br' instruction have different debug locations. However, with current implementation, there's no distinction between debug locations of these two when they are lowered to asm instructions. This is because 'icmp' and 'br' become 'setcc' 'xor' and 'brcond' in SelectionDAG, where SDLoc of 'setcc' follows the debug location of 'icmp' but SDLOC of 'xor' and 'brcond' follows the debug location of 'br' instruction, and SDLoc of 'xor' overwrites SDLoc of 'setcc' when they are folded. This patch addresses this issue.
Reviewers: atrick, bogner, andreadb, craig.topper, aprantl
Reviewed By: andreadb
Subscribers: jlebar, mkuper, jholewinski, andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29813
llvm-svn: 296825
This commit also relied on r296812, which I just reverted. We should probably
apply it again, after the r296812 has been discussed and been reapplied in some
variant.
llvm-svn: 296820
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation
as LastOp.
This patch fixes some cases where we would move stores to the wrong
insert point.
Re-commit with a fix to increment NumMove in the right place.
Differential Revision: https://reviews.llvm.org/D30124
llvm-svn: 296815
This patch fixes pr32063.
Current code in PPCTargetLowering::PerformDAGCombine can transform
bswap
store
into a single PPCISD::STBRX instruction. but it doesn't consider the case that the operand size of bswap may be larger than store size. When it occurs, we need 2 modifications,
1 For the last operand of PPCISD::STBRX, we should not use DAG.getValueType(N->getOperand(1).getValueType()), instead we should use cast<StoreSDNode>(N)->getMemoryVT().
2 Before PPCISD::STBRX, we need to shift the original operand of bswap to the right side.
Differential Revision: https://reviews.llvm.org/D30362
llvm-svn: 296811
This patch extends the current functionality of the AArch64 redundant copy
elimination pass to handle non-zero cases such as:
BB#0:
cmp x0, #1
b.eq .LBB0_1
.LBB0_1:
orr x0, xzr, #0x1 ; <-- redundant copy; x0 known to hold #1.
Differential Revision: https://reviews.llvm.org/D29344
llvm-svn: 296809
This patch adds support for struct return values to the MSP430
target backend. It also reverses the order of argument and return
registers in the calling convention to bring it into closer
alignment with the published EABI from TI.
Patch by Andrew Wygle (awygle).
Differential Revision: https://reviews.llvm.org/D29069
llvm-svn: 296807
MMX extraction often ends up as extract_i32(bitcast_v2i32(extract_i64(bitcast_v1i64(x86mmx v), 0)), 0) which fails to simplify on 32-bit targets as i64 isn't legal
llvm-svn: 296782
This patch reduces the stack frame size by not allocating the parameter area if
it is not required. In the current implementation LowerFormalArguments_64SVR4
already handles the parameter area, but LowerCall_64SVR4 does not
(when calculating the stack frame size). What this patch does is make
LowerCall_64SVR4 consistent with LowerFormalArguments_64SVR4.
Committing on behalf of Hiroshi Inoue.
Differential Revision: https://reviews.llvm.org/D29881
llvm-svn: 296771
This bug was introduced with:
https://reviews.llvm.org/rL296699
There may be a way to loosen the restriction, but for now just bail out
on any opaque constant.
The tests show that opacity is target-specific. This goes back to cost
calculations in ConstantHoisting based on TTI->getIntImmCost().
llvm-svn: 296768
The CallingConv.td rules allocate 8 bytes for these kinds of arguments
on AAPCS targets, but we were only recording the smaller amount. The
difference is theoretical on AArch64 because we don't actually store
more than the smaller amount, but it's still much better to have these
two components in agreement.
Based on Diana Picus's ARM equivalent patch (where it matters a lot
more).
llvm-svn: 296754
If dominator tree is not calculated or is invalidated, set corresponding
pointer in the pass state to nullptr. Such pointer value will indicate
that operations with dominator tree are not allowed. In particular, it
allows to skip verification for such pass state. The dominator tree is
not calculated if the machine dominator pass was skipped, it occures in
the case of entities with linkage available_externally.
The change fixes some test fails observed when expensive checks
are enabled.
Differential Revision: https://reviews.llvm.org/D29280
llvm-svn: 296742
Surprisingly, one of the three interference checks in LiveRegMatrix was
using the main live range instead of the apropriate subregister range
resulting in unnecessarily conservative results.
llvm-svn: 296722
Original commit message:
[ARM] Fix insert point for store rescheduling.
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation as
LastOp.
This patch fixes some cases where we would sink stores for no reason.
llvm-svn: 296718
Summary:
This can be used to optimize large multiplications after legalization.
Depends on D29565
Reviewers: mkuper, spatel, RKSimon, zvi, bkramer, aaboud, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29587
llvm-svn: 296711
Until now, we've had to use -global-isel to enable GISel. But using
that on other targets that don't support it will result in an abort, as we
can't build a full pipeline.
Additionally, we want to experiment with enabling GISel by default for
some targets: we can't just enable GISel by default, even among those
target that do have some support, because the level of support varies.
This first step adds an override for the target to explicitly define its
level of support. For AArch64, do that using
a new command-line option (I know..):
-aarch64-enable-global-isel-at-O=<N>
Where N is the opt-level below which GISel should be used.
Default that to -1, so that we still don't enable GISel anywhere.
We're not there yet!
While there, remove a couple LLVM_UNLIKELYs. Building the pipeline is
such a cold path that in practice that shouldn't matter at all.
llvm-svn: 296710
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation as
LastOp.
This patch fixes some cases where we would sink stores for no reason.
Differential Revision: https://reviews.llvm.org/D30124
llvm-svn: 296708
This code starts from the high end of the sorted vector of offsets, and
works backwards: it tries to find contiguous offsets, process them, then
pops them from the end of the vector. Most of the code agrees with this
order of processing, but one loop doesn't: it instead processes elements
from the low end of the vector (which are nodes with unrelated offsets).
Fix that loop to process the correct elements.
This has a few implications. One, we don't incorrectly return early when
processing multiple groups of offsets in the same block (which allows
rescheduling prera-ldst-insertpt.mir). Two, we pick the correct insert
point for loads, so they're correctly sorted (which affects the
scheduling of vldm-liveness.ll). I think it might also impact some of
the heuristics slightly.
Differential Revision: https://reviews.llvm.org/D30368
llvm-svn: 296701
This is part of the ongoing attempt to improve select codegen for all targets and select
canonicalization in IR (see D24480 for more background). The transform is a subset of what
is done in InstCombine's FoldOpIntoSelect().
I first noticed a regression in the x86 avx512-insert-extract.ll tests with a patch that
hopes to convert more selects to basic math ops. This appears to be a general missing DAG
transform though, so I added tests for all standard binops in rL296621
(PowerPC was chosen semi-randomly; it has scripted FileCheck support, but so do ARM and x86).
The poor output for "sel_constants_shl_constant" is tracked with:
https://bugs.llvm.org/show_bug.cgi?id=32105
Differential Revision: https://reviews.llvm.org/D30502
llvm-svn: 296699
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
llvm-svn: 296683
This patch adds a MachineSSA pass that coalesces blocks that branch
on the same condition.
Committing on behalf of Lei Huang.
Differential Revision: https://reviews.llvm.org/D28249
llvm-svn: 296670
Add check that deleted nodes do not get added to worklist. This can
occur when a node's operand is simplified to an existing node.
This fixes PR32108.
Reviewers: jyknight, hfinkel, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30506
llvm-svn: 296668
Resubmit r295336 after the bug with non-zero offset patterns on BE targets is fixed (r296336).
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 296651
On Hexagon, values of type i1 are passed in registers of type i32,
even though i1 is not a legal value for these registers. This is a
special case and needs special handling to maintain consistency of
the lowering information.
This fixes PR32089.
llvm-svn: 296645
Lower i1, i8 and i16 call parameters by extending them before storing them on
the stack. Also make sure we encode the correct, extended size in the
corresponding memory operand, and that we compute the correct stack size in the
end.
The latter is a bit more complicated because we used to compute the stack size
in the getStackAddress method, based on the Size and Offset of the parameters.
However, if the last parameter is sign extended, we'd be using the wrong,
non-extended size, and we'd end up with a smaller stack than we need to hold the
extended value. Instead of hacking this up based on the value of Size in
getStackAddress, we move our stack size handling logic to assignArg, where we
have access to the CCState which knows everything we could possibly want to know
about the stack. This way we don't need to duplicate any knowledge or resort to
any ugly hacks.
On this same occasion, update the IRTranslator test to check the sizes of the
stores everywhere, not just for sign extended paramteres.
llvm-svn: 296631
Modify the test so that it is still testing something
closer to what it was intended to originally.
I think the original intent was to test the situation where
there was a branch on execz and then unconditional branch
required relaxing.With the change in r296539,
there was no longer and execz branch.
Change the test so that there is now an execz branch inserted.
There is no longer an unconditional branch after the execz branch,
so this might need to be tricked in some other way to keep that
there.
llvm-svn: 296574
When SDAGISel (top-down) selects a tail-call, it skips the remainder
of the block.
If, before that, FastISel (bottom-up) selected some of the (no-op) next
few instructions, we can end up with dead instructions following the
terminator (selected by SDAGISel).
We need to erase them, as we know they aren't necessary (in addition to
being incorrect).
We already do this when FastISel falls back on the tail-call itself.
Also remove the FastISel-emitted code if we fallback on the
instructions between the tail-call and the return.
llvm-svn: 296552
Iterating on the use-list we're modifying doesn't work: after the first
iteration, the use-list iterator will point to a MachineOperand
referencing the new register. This caused us to skip the other uses to
replace.
Instead, use MRI.replaceRegWith(), which accounts for this behavior.
llvm-svn: 296551
To facilitate this, add a new hidden command-line option to disable
the explicit-locals pass. That causes llc to emit invalid code that doesn't
have all locals converted to get_local/set_local, however it simplifies
testwriting in many cases.
llvm-svn: 296540
This prevents generating stm r1!, {r0, r1} on Thumb1, where value
stored for r1 is UNKONWN.
Patch by Zhaoshi Zheng.
Differential Revision: https://reviews.llvm.org/D27910
llvm-svn: 296538
Requesting DWARF v5 will now get you the new compile-unit and
type-unit headers. llvm-dwarfdump will also recognize them.
Differential Revision: http://reviews.llvm.org/D30206
llvm-svn: 296514
This recovers a test case that was severely broken by r296476, my making sure we don't create ADD/ADC that loads and stores when there is also a flag dependency.
llvm-svn: 296486
Stack Smash Protection is not completely free, so in hot code, the overhead it causes can cause performance issues. By adding diagnostic information for which functions have SSP and why, a user can quickly determine what they can do to stop SSP being applied to a specific hot function.
This change adds a remark that is reported by the stack protection code when an instruction or attribute is encountered that causes SSP to be applied.
Patch by: James Henderson
Differential Revision: https://reviews.llvm.org/D29023
llvm-svn: 296483
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296476
Lower i32, float and double parameters that need to live on the stack. This
boils down to creating some G_GEPs starting from the stack pointer and storing
the values there. During the process we also keep track of the stack size and
use the final value in the ADJCALLSTACKDOWN/UP instructions.
We currently assert for smaller types, since they usually require extensions.
They will be handled in a separate patch.
llvm-svn: 296473
Summary:
With this change ImplicitNullCheck optimization uses alias analysis
and can use load/store memory access for implicit null check if there
are other load/store before but memory accesses do not alias.
Patch by Serguei Katkov!
Reviewers: sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30331
llvm-svn: 296440
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.
This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.
The outliner is run like so:
clang -mno-red-zone -mllvm -enable-machine-outliner file.c
Patch by Jessica Paquette<jpaquette@apple.com>!
rdar://29166825
Differential Revision: https://reviews.llvm.org/D26872
llvm-svn: 296418
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296416
The transform in question claims to be doing:
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
...starting in PerformADDCombineWithOperands(), but it wasn't actually checking for a setcc node
for the sext/zext patterns.
This is exactly the opposite of a transform I'd like to add to DAGCombiner's foldSelectOfConstants(),
so I was seeing infinite loops with my draft of a patch applied.
The changes in select_const.ll look positive (less instructions). The change in arm-and-tst-peephole.ll
is unrelated. We're changing the input IR in that test to preserve the intent of the test, but that's
not affected by this code change.
Differential Revision:
https://reviews.llvm.org/D30355
llvm-svn: 296389
DAGCombiner already supports peeking thorough shuffles to improve vector element extraction, but legalization often leaves us in situations where we need to extract vector elements after shuffles have already been lowered.
This patch adds support for VECTOR_EXTRACT_ELEMENT/PEXTRW/PEXTRB instructions to attempt to handle target shuffles as well. I've covered some basic scenarios including handling shuffle mask scaling and the implicit zero-extension of PEXTRW/PEXTRB, there is more that could be done here (that I've mentioned in TODOs) but I haven't found many cases where its worth it.
Differential Revision: https://reviews.llvm.org/D30176
llvm-svn: 296381
Summary: Existing implementation of duplicateSimpleBB function drops DebugLoc metadata of branch instructions during the transformation. This patch addresses this issue by making newly created branch instructions to keep the metadata of replaced branch instructions.
Reviewers: qcolombet, craig.topper, aprantl, MatzeB, sanjoy, dblaikie
Reviewed By: dblaikie
Subscribers: dblaikie, llvm-commits
Differential Revision: https://reviews.llvm.org/D30026
llvm-svn: 296371
This pattern is essentially a i16 load from p+1 address:
%p1.i16 = bitcast i8* %p to i16*
%p2.i8 = getelementptr i8, i8* %p, i64 2
%v1 = load i16, i16* %p1.i16
%v2.i8 = load i8, i8* %p2.i8
%v2 = zext i8 %v2.i8 to i16
%v1.shl = shl i16 %v1, 8
%res = or i16 %v1.shl, %v2
Current implementation would identify %v1 load as the first byte load and would mistakenly emit a i16 load from %p1.i16 address. This patch adds a check that the first byte is loaded from a non-zero offset of the first load address. This way this address can be used as the base address for the combined value. Otherwise just give up combining.
llvm-svn: 296336
Summary:
While collecting operands we make copies of the LiveReg objects which are stored in the LiveRegs array. If the instruction uses the same register multiple times we end up with multiple copies. Later we iterate through the collected list of LiveReg objects and merge DomainValues. In the process of doing this the merge function can change the contents of the original LiveReg object in the LiveRegs array, but not the copies that have been made. So when we get to the second usage of the register we end up seeing a stale copy of the LiveReg object.
To fix this I've stopped copying and now just store a pointer to the original LiveReg object. Another option might be to avoid adding the same register to the Regs array twice, but this approach seemed simpler.
The included test case exposes this bug due to an AVX-512 masked OR instruction using the same register for the passthru operand and one of the inputs to the OR operation.
Fixes PR30284.
Reviewers: RKSimon, stoklund, MatzeB, spatel, myatsina
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30242
llvm-svn: 296260
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296252
With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
llvm-svn: 296190
This reverts commit r296009. It broke one out of tree target and also
does not account for all partial lines added or removed when calculating
PressureDiff.
llvm-svn: 296182
All G_CONSTANTS created by the MachineIRBuilder have an operand of type CImm
(i.e. a ConstantInt), so that's what the selector needs to look for.
llvm-svn: 296176
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296149
Provide a 64-bit pattern to use SUBFIC for subtracting from a 16-bit immediate.
The corresponding pattern already exists for 32-bit integers.
Committing on behalf of Hiroshi Inoue.
Differential Revision: https://reviews.llvm.org/D29387
llvm-svn: 296144
Emit clrrdi (extended mnemonic for rldicr) for AND-ing with masks that
clear bits from the right hand size.
Committing on behalf of Hiroshi Inoue.
Differential Revision: https://reviews.llvm.org/D29388
llvm-svn: 296143
The motivation for filling out these select-of-constants cases goes back to D24480,
where we discussed removing an IR fold from add(zext) --> select. And that goes back to:
https://reviews.llvm.org/rL75531https://reviews.llvm.org/rL159230
The idea is that we should always canonicalize patterns like this to a select-of-constants
in IR because that's the smallest IR and the best for value tracking. Note that we currently
do the opposite in some cases (like the cases in *this* patch). Ie, the proposed folds in
this patch already exist in InstCombine today:
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/InstCombine/InstCombineSelect.cpp#L1151
As this patch shows, most targets generate better machine code for simple ext/add/not ops
rather than a select of constants. So the follow-up steps to make this less of a patchwork
of special-case folds and missing IR canonicalization:
1. Have DAGCombiner convert any select of constants into ext/add/not ops.
2 Have InstCombine canonicalize in the other direction (create more selects).
Differential Revision: https://reviews.llvm.org/D30180
llvm-svn: 296137
This time with the missing files.
Similar to PR/25526, fast-regalloc introduces spills at the end of basic
blocks. When this occurs in between an ll and sc, the store can cause the
atomic sequence to fail.
This patch fixes the issue by introducing more pseudos to represent atomic
operations and moving their lowering to after the expansion of postRA
pseudos.
This resolves PR/32020.
Thanks to James Cowgill for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30257
llvm-svn: 296134
Similar to PR/25526, fast-regalloc introduces spills at the end of basic
blocks. When this occurs in between an ll and sc, the store can cause the
atomic sequence to fail.
This patch fixes the issue by introducing more pseudos to represent atomic
operations and moving their lowering to after the expansion of postRA
pseudos.
This resolves PR/32020.
Thanks to James Cowgill for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30257
llvm-svn: 296132
Summary:
This isn't testable for AArch64 by itself so this patch also adds
support for constant immediates in the pattern and physical
register uses in the result.
The new IntOperandMatcher matches the constant in patterns such as
'(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold
immediates into an instruction so this is the first rule that will match
across multiple BB's.
The Renderer hierarchy is responsible for adding operands to the result
instruction. Renderers can copy operands (CopyRenderer) or add physical
registers (in particular %wzr and %xzr) to the result instruction
in any order (OperandMatchers now import the operand names from
SelectionDAG to allow renderers to access any operand). This allows us to
emit the result instruction for:
%1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0
%1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0
although the latter is untested since the matcher/importer has not been
taught about commutativity yet.
Added BuildMIAction which can build new instructions and mutate them where
possible. W.r.t the mutation aspect, MatchActions are now told the name of
an instruction they can recycle and BuildMIAction will emit mutation code
when the renderers are appropriate. They are appropriate when all operands
are rendered using CopyRenderer and the indices are the same as the matcher.
This currently assumes that all operands have at least one matcher.
Finally, this change also fixes a crash in
AArch64InstructionSelector::select() caused by an immediate operand
passing isImm() rather than isCImm(). This was uncovered by the other
changes and was detected by existing tests.
Depends on D29711
Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar
Reviewed By: rovka
Subscribers: aemerson, dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D29712
llvm-svn: 296131
The Fuchsia ABI defines slots from the thread pointer where the
stack-guard value for stack-protector, and the unsafe stack pointer
for safe-stack, are stored. This parallels the Android ABI support.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D30237
llvm-svn: 296081
clang will generate IR like this for input using packed bitfields;
very simple semantically, but it's a bit tricky to actually
generate good code.
llvm-svn: 296080
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296060
This patch enables support for .f16x2 operations.
Added new register type Float16x2.
Added support for .f16x2 instructions.
Added handling of vectorized loads/stores of v2f16 values.
Differential Revision: https://reviews.llvm.org/D30057
Differential Revision: https://reviews.llvm.org/D30310
llvm-svn: 296032
FastISel wasn't checking the isFPOnlySP subtarget feature before emitting
double-precision operations, so it got completely invalid CodeGen for doubles
on Cortex-M4F.
The normal ISel testing wasn't spectacular either so I added a second RUN line
to improve that while I was in the area.
llvm-svn: 296031
Having more fine-grained information on the specific construct that
caused us to fallback is valuable for large-scale data collection.
We still have the fallback warning, that's also used for FastISel.
We still need to remove the fallback warning, and teach FastISel to also
emit remarks (it currently has a combination of the warning, stats, and
debug prints: the remarks could unify all three).
The abort-on-fallback path could also be better handled using remarks:
one could imagine a "-Rpass-error", analoguous to "-Werror", which would
promote missed/failed remarks to errors. It's not clear whether that
would be useful for other remarks though, so we're not there yet.
llvm-svn: 296013
If a subreg is used in an instruction it counts as a whole superreg
for the purpose of register pressure calculation. This patch corrects
improper register pressure calculation by examining operand's lane mask.
Differential Revision: https://reviews.llvm.org/D29835
llvm-svn: 296009
Introduce a common ValueHandler for call returns and formal arguments, and
inherit two different versions for handling the differences (at the moment the
only difference is the way physical registers are marked as used).
llvm-svn: 295973
Add support for lowering calls with parameters than can fit into regs. Use the
same ValueHandler that we used for function returns, but rename it to match its
new, extended purpose.
llvm-svn: 295971
The ARMConstantIslandPass didn't have support for handling accesses to
constant island objects through ARM::t2LDRBpci instructions. This adds
support for that.
This fixes PR31997.
llvm-svn: 295964
AVX versions of the converts work on f32/f64 types, while AVX512 version work on vectors.
Differential Revision: https://reviews.llvm.org/D29988
llvm-svn: 295940
The manual is unclear on the details of this. It's not
clear to me if denormals are not allowed with clamp,
or if that is only omod. Not allowing denorms for
fp16 or fp64 isn't useful so I also question if that
is really a restriction. Same with whether this is valid
without IEEE mode enabled.
llvm-svn: 295905
This should avoid reporting any stack needs to be allocated in the
case where no stack is truly used. An unused stack slot is still
left around in other cases where there are real stack objects
but no spilling occurs.
llvm-svn: 295891
This allows us to ensure that 0 is never a valid pointer
to a user object, and ensures that the offset is always legal
without needing a register to access it. This comes at the cost
of usable offsets and wasted stack space.
llvm-svn: 295877
Summary:
Extend AArch64RedundantCopyElimination to catch cases where the register
that is known to be zero is COPY'd in the predecessor block. Before
this change, this pass would catch cases like:
CBZW %W0, <BB#1>
BB#1:
%W0 = COPY %WZR // removed
After this change, cases like the one below are also caught:
%W0 = COPY %W1
CBZW %W1, <BB#1>
BB#1:
%W0 = COPY %WZR // removed
This change results in a 4% increase in static copies removed by this
pass when compiling the llvm test-suite. It also fixes regressions
caused by doing post-RA copy propagation (a separate change to be put up
for review shortly).
Reviewers: junbuml, mcrosier, t.p.northover, qcolombet, MatzeB
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D30113
llvm-svn: 295863
The pass tries to fix a spill of LR that turns out to be unnecessary.
So it removes the tPOP but forgets to remove tPUSH.
This causes the stack be misaligned upon returning the function.
Thus, remove the tPUSH as well in this case.
Differential Revision: https://reviews.llvm.org/D30207
llvm-svn: 295816
This patch adds missing sched classes for Thumb2 instructions.
This has been missing so far, and as a consequence, machine
scheduler models for individual sub-targets have tended to
be larger than they needed to be. These patches should help
write schedulers better and faster in the future
for ARM sub-targets.
Reviewer: Diana Picus
Differential Revision: https://reviews.llvm.org/D29953
llvm-svn: 295811
This patch introduces new X86ISD::FMAXS and X86ISD::FMINS opcodes. The legacy intrinsics now lower to this node. As do the AVX-512 masked intrinsics when the rounding mode is CUR_DIRECTION.
I've merged a copy of the tablegen multiclass avx512_fp_scalar into avx512_fp_scalar_sae. avx512_fp_scalar still needs to support CUR_DIRECTION appearing as a rounding mode for X86ISD::FADD_ROUND and others.
Differential revision: https://reviews.llvm.org/D30186
llvm-svn: 295810
Change implementation to use max instead of add.
min/max/med3 do not flush denormals regardless of the mode,
so it is OK to use it whether or not they are enabled.
Also allow using clamp with f16, and use knowledge
of dx10_clamp.
llvm-svn: 295788
Original code only used vector loads/stores for explicit vector arguments.
It could also do more loads/stores than necessary (e.g v5f32 would
touch 8 f32 values). Aggregate types were loaded one element at a time,
even the vectors contained within.
This change attempts to generalize (and simplify) parameter space
loads/stores so that vector loads/stores can be used more broadly.
Functionality of the patch has been verified by compiling thrust
test suite and manually checking the differences between PTX
generated by llvm with and without the patch.
General algorithm:
* ComputePTXValueVTs() flattens input/output argument into a flat list
of scalars to load/store and returns their types and offsets.
* VectorizePTXValueVTs() uses that data to create vectorization plan
which returns an array of flags marking boundaries of vectorized
load/stores. Scalars are represented as 1-element vectors.
* Code that generates loads/stores implements a simple state machine
that constructs a vector according to the plan.
Differential Revision: https://reviews.llvm.org/D30011
llvm-svn: 295784
Before frame offsets are calculated, try to eliminate the
frame indexes used by SGPR spills. Then we can delete them
after.
I think for now we can be sure that no other instruction
will be re-using the same frame indexes. It should be easy
to notice if this assumption ever breaks since everything
asserts if it tries to use a dead frame index later.
The unused emergency stack slot seems to still be left behind,
so an additional 4 bytes is still wasted.
llvm-svn: 295753
Summary:
Rework the code that was sinking/duplicating (icmp and, 0) sequences
into blocks where they were being used by conditional branches to form
more tbz instructions on AArch64. The new code is more general in that
it just looks for 'and's that have all icmp 0's as users, with a target
hook used to select which subset of 'and' instructions to consider.
This change also enables 'and' sinking for X86, where it is more widely
beneficial than on AArch64.
The 'and' sinking/duplicating code is moved into the optimizeInst phase
of CodeGenPrepare, where it can take advantage of the fact the
OptimizeCmpExpression has already sunk/duplicated any icmps into the
blocks where they are used. One minor complication from this change is
that optimizeLoadExt needed to be updated to always mark 'and's it has
determined should be in the same block as their feeding load in the
InsertedInsts set to avoid an infinite loop of hoisting and sinking the
same 'and'.
This change fixes a regression on X86 in the tsan runtime caused by
moving GVNHoist to a later place in the optimization pipeline (see
PR31382).
Reviewers: t.p.northover, qcolombet, MatzeB
Subscribers: aemerson, mcrosier, sebpop, llvm-commits
Differential Revision: https://reviews.llvm.org/D28813
llvm-svn: 295746
As i64 isn't a value type on 32-bit targets, we fail to fold the VZEXT_LOAD into VPBROADCASTQ.
Also shows that we're not decoding VPERMIV3 shuffles very well....
llvm-svn: 295729
This matches what is already done during shuffle lowering and helps prevent the need for a zero-vector in cases where shuffles match both patterns.
llvm-svn: 295723
Currently just contains one case where we combine to VZEXT_MOVL instead of VZEXT which would avoid the need for a zero vector to be generated
llvm-svn: 295721
They are all covered by the SSE4.2 intrinsics test with SSE4.2, AVX, and AVX512 command lines.
Merge sse42.ll into the other intrinsics test. Rename sse42_64.ll to be named like other intrinsic tests.
llvm-svn: 295707
They are all covered by the SSE2 intrinsics test with SSE2, AVX, and AVX512 command lines.
Also remove an unneeded lfence intrinsic test since it was already covered.
llvm-svn: 295700
They are all covered by the SSE intrinsics test with SSE, AVX, and AVX512 command lines.
Also remove an unneeded sfence intrinsic test since it was already covered.
llvm-svn: 295699
Summary:
Sandy Bridge and later CPUs have better throughput using a SHLD to implement rotate versus the normal rotate instructions. Additionally it saves one uop and avoids a partial flag update dependency.
This patch implements this change on any Sandy Bridge or later processor without BMI2 instructions. With BMI2 we will use RORX as we currently do.
Reviewers: zvi
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30181
llvm-svn: 295697
Summary:
Currently, BranchFolder drops DebugLoc for branch instructions in some places. For example, for the test code attached, the branch instruction of 'entry' block has a DILocation of
```
!12 = !DILocation(line: 6, column: 3, scope: !11)
```
, but this information is gone when then block is lowered because BranchFolder misses it. This patch is a fix for this issue.
Reviewers: qcolombet, aprantl, craig.topper, MatzeB
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29902
llvm-svn: 295684
Its more profitable to go through memory (1 cycles throughput)
than using VMOVD + VPERMV/PSHUFB sequence ( 2/3 cycles throughput) to implement EXTRACT_VECTOR_ELT with variable index.
IACA tool was used to get performace estimation (https://software.intel.com/en-us/articles/intel-architecture-code-analyzer)
For example for var_shuffle_v16i8_v16i8_xxxxxxxxxxxxxxxx_i8 test from vector-shuffle-variable-128.ll I get 26 cycles vs 79 cycles.
Removing the VINSERT node, we don't need it any more.
Differential Revision: https://reviews.llvm.org/D29690
llvm-svn: 295660
Summary:
This file was missed in the commit for Cortex-M23 and Cortex-M33
support. See https://reviews.llvm.org/D29073?id=85814 .
Reviewers: rengolin, javed.absar, samparker
Reviewed By: samparker
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D30162
llvm-svn: 295655
Replaces existing approach that could only search BUILD_VECTOR nodes.
Requires getTargetConstantBitsFromNode to discriminate cases with all/partial UNDEF bits in each element - this should also be useful when we get around to supporting getTargetShuffleMaskIndices with UNDEF elements.
llvm-svn: 295613
As discussed on D27692, this permits another domain to be used to combine a shuffle at high depths.
We currently set the required depth at 4 or more combined shuffles, this is probably too high for most targets but is a good starting point and already helps avoid a number of costly variable shuffles.
llvm-svn: 295608
The instructions are marked commutable, but without special handling we don't get the immediate correct.
While here also remove the masked memory forms that aren't commutable.
llvm-svn: 295602