This code works with AAPCS-style {fp, lr} frames. Unlike linux perf, it does
not unwind through code compiled with -mapcs-frame (which Clang does not
support anyway).
llvm-svn: 199725
This is apparently a bit of a white lie (they can affect DSPControl for
overflow etc) but similar to how we currently handle floating-point operations.
When it becomes relevant the whole lot can be reviewed properly.
llvm-svn: 199718
Add support to llvm-readobj to decode the actual opcodes. The ARM EHABI opcodes
are a variable length instruction set that describe the operations required for
properly unwinding stack frames.
The primary motivation for this change is to ease the creation of tests for the
ARM EHABI object emission as well as the unwinding directive handling in the ARM
IAS.
Thanks to Logan Chien for an extra test case!
llvm-svn: 199708
This implements the unwind_raw directive for the ARM IAS. The unwind_raw
directive takes the form of a stack offset value followed by one or more bytes
representing the opcodes to be emitted. The opcode emitted will interpreted as
if it were assembled by the opcode assembler via the standard unwinding
directives.
Thanks to Logan Chien for an extra test!
llvm-svn: 199707
The .personalityindex directive is equivalent to the .personality directive with
the ARM EABI personality with the specific index (0, 1, 2). Both of these
directives indicate personality routines, so enhance the personality directive
handling to take into account personalityindex.
Bonus fix: flush the UnwindContext at the beginning of a new function.
Thanks to Logan Chien for additional tests!
llvm-svn: 199706
It was commited as r199628 but reverted in r199628 as causing
regression test failed. It's because of old vervsion of patch
I used to commit. Sorry for mistake.
llvm-svn: 199704
I misunderstood the discussion on this. The complexity here is
justified by the malloc overhead it saves.
This reverts commit r199302.
llvm-svn: 199700
to not guess at a symbol name in some cases.
The problem is that in object files assembled starting at address 0, when
trying to symbolicate something that starts like this:
% cat x.s
_t1:
vpshufd $0x0, %xmm1, %xmm0
the symbolic disassembly can end up like this:
% otool -tV x.o
x.o:
(__TEXT,__text) section
_t1:
0000000000000000 vpshufd $_t1, %xmm1, %xmm0
Which is in this case produced incorrect symbolication.
But it is useful in some cases to use the SymbolLookUp() call back
to guess at some immediate values. For example one like this
that does not have an external relocation entry:
% cat y.s
_t1:
movl $_d1, %eax
.data
_d1: .long 0
% clang -c -arch i386 y.s
% otool -tV y.o
y.o:
(__TEXT,__text) section
_t1:
0000000000000000 movl $_d1, %eax
% otool -rv y.o
y.o:
Relocation information (__TEXT,__text) 1 entries
address pcrel length extern type scattered symbolnum/value
00000001 False long False VANILLA False 2 (__DATA,__data)
So the change is based on it is not likely that an immediate Value
coming from an instruction field of a width of 1 byte, other than branches
and items with relocation, are not likely symbol addresses.
With the change the first case above simply becomes:
% otool -tV x.o
x.o:
(__TEXT,__text) section
_t1:
0000000000000000 vpshufd $0x0, %xmm1, %xmm0
and the second case continues to work as expected.
rdar://14863405
llvm-svn: 199698
when used with symbolic disassembly, add a check that the operand
is an immediate and has not been symbolicated to MCExpr operand.
I’m trying to enable the ‘C’ disassembly API option
LLVMDisassembler_Option_SetInstrComments for darwin’s
otool(1) that uses the llvm disassembler API. The problem is
that the disassembler API can change an immediate operand to
an MCExpr operand if it symbolicates it with the call backs.
And if it does the code in llvm::EmitAnyX86InstComments()
will crash when it assumes these operands are immediates.
The fix for this is very straight forward to just protect the call
to getImm() with a check of isImm(). So if the immediate for
an instruction is symbolicated it simply doesn’t get the X86
verbose assembly comments:
% otool -tV test_asm.o
test_asm.o:
(__TEXT,__text) section
_t1:
0000000000000000 vpshufd $_t1, %xmm1, %xmm0
0000000000000005 retq
0000000000000006 nopw %cs:_t1(%rax,%rax)
_t2:
0000000000000010 vpshufd $-0x1, %xmm0, %xmm0 ## xmm0 = xmm0[3,3,3,3]
0000000000000015 retq
0000000000000016 nopw %cs:_t1(%rax,%rax)
_t3:
0000000000000020 vpshufd $_t1, %xmm1, %xmm0
0000000000000025 retq
0000000000000026 nopw %cs:_t1(%rax,%rax)
_t4:
0000000000000030 vpshufd $0x2d, %xmm0, %xmm0 ## xmm0 = xmm0[1,3,2,0]
0000000000000035 retq
The fact that the immediate $0x0 is being symbolicated at
all in this case is a different problem which my next patch
will address.
rdar://10989286
llvm-svn: 199697
Recent versions of the iOS simulator no longer require linking with the
crt1.o, dylib1.o, or bundle1.o files. The relevant code is now included in
libSystem for the simulator.
llvm-svn: 199696
Without them they can be merged with non unnamed_addr constants during LTO.
The resulting constant is not unnamed_addr and goes in a different section,
which causes ld64 to crash.
A testcase that would crash before:
* file1.mm:
void g(id notification) {
[notification valueForKey:@"name"];
}
* file2.cpp:
extern const char js_name_str[] = "name";
* file3.cpp
extern bool JS_GetProperty(const char *name);
extern const char js_name_str[];
bool js_ReportUncaughtException() { JS_GetProperty(js_name_str); }
run
clang file1.mm -o file1.o -c -w -emit-llvm
clang file2.cpp -o file2.o -c -w -emit-llvm
clang file3.cpp -o file3.o -c -w
ld -dylib -o XUL file1.o file2.o file3.o -undefined dynamic_lookup.
llvm-svn: 199688
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
StackProtector keeps a ValueMap of alloca instructions to layout kind tags for
use by PEI and other later passes. When stack coloring replaces one alloca with
a bitcast to another one, the key replacement in this map does not work.
Instead, provide an interface to manage this updating directly. This seems like
an improvement over the old behavior, where the layout map would not get
updated at all when the stack slots were merged. In practice, however, there is
likely no observable difference because PEI only did anything special with
'large array' kinds, and if one large array is merged with another, than the
replacement should already have been a large array.
This is an attempt to unbreak the clang-x86_64-darwin11-RA builder.
llvm-svn: 199684
Add target specific rules for combining vselect dag nodes into movss/movsd
when possible.
If the vector type of the vselect dag node in input is either MVT::v4i13 or
MVT::v4f32, then try to fold according to rules:
1) fold (vselect (build_vector (0, -1, -1, -1)), A, B) -> (movss A, B)
2) fold (vselect (build_vector (-1, 0, 0, 0)), A, B) -> (movss B, A)
If the vector type of the vselect dag node in input is either MVT::v2i64 or
MVT::v2f64 (and we have SSE2), then try to fold according to rules:
3) fold (vselect (build_vector (0, -1)), A, B) -> (movsd A, B)
4) fold (vselect (build_vector (-1, 0)), A, B) -> (movsd B, A)
llvm-svn: 199683
optional DWARF sections, so compiling with -g does not result in
different code being generated for PC-relative loads.
This is reapplying a diet r197922 (__TEXT-only).
llvm-svn: 199681