Sema::RequireCompleteExprType() a bit more, setting the point of
instantiation if needed, and skipping explicit specializations entirely.
llvm-svn: 132547
of incomplete array type, attempt to complete the array type. This was
made much easier by Chandler's addition of RequireCompleteExprType(),
which I've tweaked (slightly) to improve the consistency of the
DeclRefExpr. Fixes PR7985.
llvm-svn: 132530
within class templates when they are necessary to complete the type of
the member. The canonical example is code like:
template <typename T> struct S {
static const int arr[];
static const int x;
static int f();
};
template <typename T> const int S<T>::arr[] = { 1, 2, 3 };
template <typename T> const int S<T>::x = sizeof(arr) / sizeof(arr[0]);
template <typename T> int S<T>::f() { return x; }
int x = S<int>::f();
We need to instantiate S<T>::arr's definition to pick up its initializer
and complete the array type. This involves new code to specially handle
completing the type of an expression where the type alone is
insufficient. It also requires *updating* the expression with the newly
completed type. Fortunately, all the other infrastructure is already in
Clang to do the instantiation, do the completion, and prune out the
unused bits of code that result from this instantiation.
This addresses the initial bug in PR10001, and will be a step to
fleshing out other cases where we need to work harder to complete an
expression's type. Who knew we still had missing C++03 "features"?
llvm-svn: 132172
used to do this, but it got lost when we switched functional-style
cast syntax over to using the new initialization code. Fixes PR6457.
llvm-svn: 97568
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446