This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
which led to
ERROR: test_auxv_chunked_reads_work_debugserver (tools/lldb-server/TestGdbRemoteAuxvSupport.py)
ERROR: test_auxv_data_is_correct_size_debugserver (tools/lldb-server/TestGdbRemoteAuxvSupport.py)
ERROR: test_auxv_keys_look_valid_debugserver (tools/lldb-server/TestGdbRemoteAuxvSupport.py)
ERROR: test_qSupported_returns_known_stub_features_debugserver (tools/lldb-server/TestLldbGdbServer.py)
failures because debugserver was advertising compression being available, e.g.
send packet: $qSupported:xmlRegisters=i386,arm,mips#12
read packet: $qXfer:features:read+;PacketSize=20000;qEcho+;SupportedCompressions=zlib-deflate;DefaultCompressionMinSize=384#00
maybe these tests should be a little more accepting of additional
features. but I didn't mean for this to be enabled on mac native.
llvm-svn: 292890
The class is only used in the debugserver. The rest of lldb has the StringExtractor class.
Xcode project will need to be updated after this.
llvm-svn: 281226
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
I have some improvements to make to StringExtractor that require
using LLVM. debugserver can't take a dependency on LLVM but uses
this file, so I'm forking it off into StdStringExtractor and
StringExtractor, so that StringExtractor can take advantage of
some performance improvements and readability improvements that
LLVM can provide.
llvm-svn: 279997
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
to find the solibs loaded in a process. Support two new ways of
sending the jGetLoadedDynamicLibrariesInfos packet to debugserver
and add a new jGetSharedCacheInfo packet. Update the documentation
for these packets as well. The changes to lldb to use these will
be a separate commit.
<rdar://problem/25251243>
llvm-svn: 274718
Explicitly provide an initializer for the std::vector in the constructed type.
Addresses -Wmissing-field-initializers warnings from clang. NFC.
llvm-svn: 268758
Remove a couple of `default` cases from switches which are covered. This is
beneficial since it would allow the compiler to indicate when a new enum value
is added and the switch is not updated. Fixes some warnings from clang. NFC.
llvm-svn: 268756
rnb_err_t
RNBRemote::HandlePacket_stop_process (const char *p)
{
if (!DNBProcessInterrupt(m_ctx.ProcessID()))
HandlePacket_last_signal (NULL);
return rnb_success;
}
In the call to DNBProcessInterrupt we did:
nub_bool_t
DNBProcessInterrupt(nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Interrupt();
return false;
}
This would always return false. It would cause HandlePacket_stop_process to always call "HandlePacket_last_signal (NULL);" which would send an extra stop reply packet _if_ the process is stopped. On a machine with enough cores, it would call DNBProcessInterrupt(...) and then HandlePacket_last_signal(NULL) so quickly that it will never send out an extra stop reply packet. But if the machine is slow enough or doesn't have enough cores, it could cause the call to HandlePacket_last_signal() to actually succeed and send an extra stop reply packet. This would cause problems up in GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse() where it would get the first stop reply packet and then possibly return or execute an async packet. If it returned, then the next packet that was sent will get the second stop reply as its response. If it executes an async packet, the async packet will get the wrong response.
To fix this I did the following:
1 - in debugserver, I fixed "bool MachProcess::Interrupt()" to return true if it sends the signal so we avoid sending the stop reply twice on slower machines
2 - Added a log line to RNBRemote::HandlePacket_stop_process() to say if we ever send an extra stop reply so we will see this in the darwin console output if this does happen
3 - Added response validators to StringExtractorGDBRemote so that we can verify some responses to some packets.
4 - Added validators to packets that often follow stop reply packets like the "m" packet for memory reads, JSON packets since "jThreadsInfo" is often sent immediately following a stop reply.
5 - Modified GDBRemoteCommunicationClient::SendPacketAndWaitForResponseNoLock() to validate responses. Any "StringExtractorGDBRemote &response" that contains a valid response verifier will verify the response and keep looking for correct responses up to 3 times. This will help us get back on track if we do get extra stop replies. If a StringExtractorGDBRemote does not have a response validator, it will accept any packet in response.
6 - In GDBRemoteCommunicationClient::SendPacketAndWaitForResponse we copy the response validator from the "response" argument over into m_async_response so that if we send the packet by interrupting the running process, we can validate the response we actually get in GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse()
7 - Modified GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse() to always check for an extra stop reply packet for 100ms when the process is interrupted. We were already doing this because we might interrupt a process with a \x03 packet, yet the process was in the process of stopping due to another reason. This race condition could cause an extra stop reply packet because the GDB remote protocol says if a \x03 packet is sent while the process is stopped, we should send a stop reply packet back. Now we always check for an extra stop reply packet when we manually interrupt a process.
The issue was showing up when our IDE would attempt to set a breakpoint while the process is running and this would happen:
--> \x03
<-- $T<stop reply 1>
--> z0,AAAAA,BB (set breakpoint)
<-- $T<stop reply 1> (incorrect extra stop reply packet)
--> c
<-- OK (response from z0 packet)
Now all packet traffic was off by one response. Since we now have a validator on the response for "z" packets, we do this:
--> \x03
<-- $T<stop reply 1>
--> z0,AAAAA,BB (set breakpoint)
<-- $T<stop reply 1> (Ignore this because this can't be the response to z0 packets)
<-- OK -- (we are back on track as this is a valid response to z0)
...
As time goes on we should add more packet validators.
<rdar://problem/22859505>
llvm-svn: 265086
We had some #ifdefs that were looking for the wrong #defines and as a result
debugserver didn't have support for certain simulators. This patch resolves
the problem.
llvm-svn: 258365
at each public stop to improve performance a bit. Most of the
information lldb needed was already in the jThreadsInfo response;
complete that information and catch a few cases where we could still
fall back to getting the information via discrete memory reads.
debugserver adds 'associated_with_dispatch_queue' and 'dispatch_queue_t
keys to the jThreadsInfo response for all the threads. lldb needs the
dispatch_queue_t value. And associated_with_dispatch_queue helps to
identify which threads definitively don't have any queue information so
lldb doesn't try to do memory reads to get that information just because
it was absent in the jThreadsInfo response.
Remove the queue information from the questionmark (T) packet. We'll
get the information for all threads via the jThreadsInfo response -
sending the information for the stopping thread (on all the private
stops, plus the less frequent public stop) was unnecessary information
being sent over the wire.
SystemRuntimeMacOSX will try to get information about queues by asking
the Threads for them, instead of reading memory.
ProcessGDBRemote changes to recognize the new keys being sent in the
jThreadsInfo response. Changes to ThreadGDBRemote to track the new
information. Also, when a thread is marked as definitively not
associated with a libdispatch queue, don't fall back to the system
runtime to try memory reads to find the queue name / kind / ID etc.
<rdar://problem/23309359>
llvm-svn: 257453
keys before we print the libdispatch queues keys (qname, qkind, qserialnum)
to make it easier to read the packet by hand. No function difference, just
reordering the keys in the output.
llvm-svn: 257229
"qserial" to "qserialnum" because "qserial" looks a lot like the
queue type (either 'serial' or 'concurrent') and can be confusing
to read through. debugserver passes these up either in the questionmark
("T") packet, or in the response to the jThreadsInfo packet.
llvm-svn: 257121
debugserver. thread-pcs has a comma separated list of base 16
addresses - the current pc value for every thread in the process.
It is a partner of the "threads:" key where a list of thread IDs
is given. The pc values in thread-pcs correspond one-to-one with
the thread IDs in the threads list.
This is a part of performance work. When lldb is instruction
stepping / fast stepping over a range of addresses for e.g. a "next"
command, and it steps in to another function, lldb will put a
breakpoint on the return address and continue the process. Before
it calls continue, it calls Thread::SetupForResume on all the
threads, and SetupForResume needs to get the current pc value for
every thread to see if any are at a breakpoint site.
The result is that issuing a "c" continue requires that we send
"read pc register" packets for every thread.
We may do this sequence of step-into-function / continue-to-get-out
many times for a single user-visible "next" or "step" command, and
with highly multithreaded programs, we are sending many extra
packets to get all the thread values.
I looked at including this data in the "jstopinfo" JSON that
we already have in the T packet. But there are three problems that
would make this increase the size of the T packet significantly.
First, numbers in JSON are base 10. Second, a proper JSON would
have something like "thread_pcs": { "34224331112":383772734222, ...}
for thread-id 34224331112 and pc 383772734222 - so we're including
a whole extra copy of the thread id in addition to the pc. Third,
the JSON text is hex-ascii'fied so the size of it is doubled.
In one example,
threads:585db8,585dc7,585dc8,585dc9,585dca,585dce;thread-pcs:100001400,7fff8badc6de,7fff8badcff6,7fff8badc6de,7fff8badc6de,7fff8badc6de;
The "thread-pcs" adds 86 characters - 136 characters for both
threads and thread-pcs. Doing this in JSON would look like
threads={"5791160":4294972416,"5791175":140735536809694,"5791176":140735536812022,"5791177":140735536809694,"5791178":140735536809694,"5791182":140735536809694}
or 160 characters -- or 320 characters once it is hex-asciified.
Given that it's 86 characters vrs 320, I went with the old style
approach. I've seen real world programs that have up to 60 threads
in them, so this could result in vastly larger packets if it
was all done in the JSON with hex-ascii expansion.
If we had an all-JSON T packet, where we didn't need to hex-ascii
encode anything, that would have been the better approach. But
we'd already have a list of threads in JSON at that point so
the additional text wouldn't be too bad.
I'm working on finishing the patches to lldb to use this data;
will commit those once I've had a chance to test them more. But
I wanted to commit the debugserver bits which are more
straightforward.
<rdar://problem/21963031>
llvm-svn: 255711
include two stack frames worth of unwind information instead of
just one -- the unwinder is trying to fetch two stack frames in
more instances now and we're sending extra memory reads resulting
in a performance degredation while stepping.
llvm-svn: 255417
This fixes the OSX build for XCode versions older than 7 by skipping
references to LC_VERSION_MIN_TVOS and LC_VERSION_MIN_WATCHOS if
TARGET_OS_TV or TARGET_OS_WATCH aren't defined.
Reviewed by: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14036
llvm-svn: 251172
previous release. Most of the diffs are duplication in the xcode
project file caused by adding a "debugserver-mini" target. Jim
Ingham added support for a new SPI needed to request app launches
on iOS. Greg Clayton added code to indicate the platform of the
binary (macosx, ios, watchos, tvos) based on Mach-O load commands.
Jason Molenda added code so debugserver will identify when it is
running on a tvos/watchos device to lldb.
llvm-svn: 251091
debugserver to match. "gcc" is now "ehframe" and "gdb" is now
"debugserver". Because this is debugserver, what we call the Process
Plugin register numbers up in lldb are the debugserver register
numbers down here - they are the register numbers that debugserver
will use to refer to these registers over the gdb-remote protocol.
debugserver was already reporting the registers with the key
"ehframe"; this change is just cleaning up the internal variable
names to match.
llvm-svn: 247751
"gcc" register numbers are now correctly referred to as "ehframe"
register numbers. In almost all cases, ehframe and dwarf register
numbers are identical (the one exception is i386 darwin where ehframe
regnums were incorrect).
The old "gdb" register numbers, which I incorrectly thought were
stabs register numbers, are now referred to as "Process Plugin"
register numbers. This is the register numbering scheme that the
remote process controller stub (lldb-server, gdbserver, core file
support, kdp server, remote jtag devices, etc) uses to refer to the
registers. The process plugin register numbers may not be contiguous
- there are remote jtag devices that have gaps in their register
numbering schemes.
I removed all of the enums for "gdb" register numbers that we had
in lldb - these were meaningless - and I put LLDB_INVALID_REGNUM
in all of the register tables for the Process Plugin regnum slot.
This change is almost entirely mechnical; the one actual change in
here is to ProcessGDBRemote.cpp's ParseRegisters() which parses the
qXfer:features:read:target.xml response. As it parses register
definitions from the xml, it will assign sequential numbers as the
eRegisterKindLLDB numbers (the lldb register numberings must be
sequential, without any gaps) and if the xml file specifies register
numbers, those will be used as the eRegisterKindProcessPlugin
register numbers (and those may have gaps). A J-Link jtag device's
target.xml does contain a gap in register numbers, and it only
specifies the register numbers for the registers after that gap.
The device supports many different ARM boards and probably selects
different part of its register file as appropriate.
http://reviews.llvm.org/D12791
<rdar://problem/22623262>
llvm-svn: 247741
major, minor, and patchlevel in the qHostInfo reply.
Document that qHostInfo may report major/minor/patch
separately / in addition to the version: combination.
<rdar://problem/22125465>
llvm-svn: 244716
This patch adds a test for ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED
around the code which requires 10.10 support to link. Without this, lldb
gets unresolved references to _csr_check and _rootless_allows_task_for_pid.
Reviewed by: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11668
llvm-svn: 243715
system, make a couple of additional checks to see if the
attach was denied via the System Integrity Protection that
is new in Mac OS X 10.11. If so, return a special E87
error code to indicate this to lldb.
Up in lldb, if we receive the E87 error code, be specific
about why the attach failed.
Also detect the more common case of general attach failure
and print a better error message than "lost connection".
I believe this code will all build on Mac OS X 10.10 systems.
It may not compile or run on earlier versions of the OS.
None of this should build on other non-darwin systems.
llvm-svn: 243511
Changed the "jthreads" key/value in the stop reply packets to be "jstopinfo". This JSON only contains threads with valid stop reasons and allows us not to have to ask about other threads via qThreadStopInfo when we are stepping. The "jstopinfo" only gets sent if there are more than one thread since the stop reply packet contains all the info needed for a single thread.
Added a Process::WillPublicStop() in case process subclasses want to do any extra gathering for public stops. For ProcessGDBRemote, we end up sending a jThreadsInfo packet to gather all expedited registers, expedited memory and MacOSX queue information. We only do this for public stops to minimize the packets we send when we have multiple private stops. Multiple private stops happen when a source level single step, step into or step out run the process multiple times while implementing the stepping, and none of these private stops make it out to the UI via notifications because they are private stops.
llvm-svn: 242593
frame, don't go any further, in RNBRemote::SendStopReplyPacketForThread.
These are the memory pre-fetches in the T05 packet and are
included in every private stop that lldb does. lldb needs, at most,
the caller stack frame so we're sending more data than needed by
including additional stack memory prefetches in this reply packet.
Once we've stopped for a public stop, we're going to do a jThreadsInfo
which will include the stack memory prefetches for all threads,
including the one which had the stop reason.
llvm-svn: 242380
This allows stepping operations that don't ever do a public stop to get all the info they need without having to send a jThreadsInfo packet since those tend to be large.
This patch will be followed by a patch that will detect when we do a public stop, and when that happens we will send a jThreadsInfo packet at that time to get all expedited registers and memory.
llvm-svn: 242352
jGetLoadedDynamicLibrariesInfos. This packet is similar to
qXfer:libraries:read except that lldb supplies the number of solibs
that should be reported about, and the start address for the list
of them. At the initial process launch we'll read the full list
of solibs linked by the process -- at this point we could be using
qXfer:libraries:read -- but on subsequence solib-loaded notifications,
we'll be fetching a smaller number of solibs, often only one or two.
A typical Mac/iOS GUI app may have a couple hundred different
solibs loaded - doing all of the loads via memory reads takes
a couple of megabytes of traffic between lldb and debugserver.
Having debugserver summarize the load addresses of all the solibs
and sending it in JSON requires a couple of hundred kilobytes
of traffic. It's a significant performance improvement when
communicating over a slower channel.
This patch leaves all of the logic for loading the libraries
in DynamicLoaderMacOSXDYLD -- it only call over ot ProcesGDBRemote
to get the JSON result.
If the jGetLoadedDynamicLibrariesInfos packet is not implemented,
the normal technique of using memory read packets to get all of
the details from the target will be used.
<rdar://problem/21007465>
llvm-svn: 241964
- Avoid sending the qfThreadInfo, qsThreadInfo packets if we have a stop reply packet with the threads already (save 2 round trip packets)
- Include the qname, qserial and qkind in the JSON info
- Report the qname, qserial and qkind to the thread so it can cache it to avoid many packets on MacOSX and iOS
- Don't clear all discoverable settings when we exec, just the ones we need to saves 1-5 packets for each exec.
llvm-svn: 240988
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
A "qSymbol::" is sent when shared libraries have been loaded by hooking into the Process::ModulesDidLoad() function from within ProcessGDBRemote. This function was made virtual so that the ProcessGDBRemote version is called, which then first calls the Process::ModulesDidLoad(), and then it queries for any symbol lookups that the remote GDB server might want to do.
This allows debugserver to request the "dispatch_queue_offsets" symbol so that it can read the queue name, queue kind and queue serial number and include this data as part of the stop reply packet. Previously each thread would have to do 3 memory reads in order to read the queue name.
This is part of reducing the number of packets that are sent between LLDB and the remote GDB server.
<rdar://problem/21494354>
llvm-svn: 240466
We have been working on reducing the packet count that is sent between LLDB and the debugserver on MacOSX and iOS. Our approach to this was to reduce the packets required when debugging multiple threads. We currently make one qThreadStopInfoXXXX call (where XXXX is the thread ID in hex) per thread except the thread that stopped with a stop reply packet. In order to implement multiple thread infos in a single reply, we need to use structured data, which means JSON. The new jThreadsInfo packet will attempt to retrieve all thread infos in a single packet. The data is very similar to the stop reply packets, but packaged in JSON and uses JSON arrays where applicable. The JSON output looks like:
[
{ "tid":1580681,
"metype":6,
"medata":[2,0],
"reason":"exception",
"qaddr":140735118423168,
"registers": {
"0":"8000000000000000",
"1":"0000000000000000",
"2":"20fabf5fff7f0000",
"3":"e8f8bf5fff7f0000",
"4":"0100000000000000",
"5":"d8f8bf5fff7f0000",
"6":"b0f8bf5fff7f0000",
"7":"20f4bf5fff7f0000",
"8":"8000000000000000",
"9":"61a8db78a61500db",
"10":"3200000000000000",
"11":"4602000000000000",
"12":"0000000000000000",
"13":"0000000000000000",
"14":"0000000000000000",
"15":"0000000000000000",
"16":"960b000001000000",
"17":"0202000000000000",
"18":"2b00000000000000",
"19":"0000000000000000",
"20":"0000000000000000"},
"memory":[
{"address":140734799804592,"bytes":"c8f8bf5fff7f0000c9a59e8cff7f0000"},
{"address":140734799804616,"bytes":"00000000000000000100000000000000"}
]
}
]
It contains an array of dicitionaries with all of the key value pairs that are normally in the stop reply packet. Including the expedited registers. Notice that is also contains expedited memory in the "memory" key. Any values in this memory will get included in a new L1 cache in lldb_private::Process where if a memory read request is made and that memory request fits into one of the L1 memory cache blocks, it will use that memory data. If a memory request fails in the L1 cache, it will fall back to the L2 cache which is the same block sized caching we were using before these changes. This allows a process to expedite memory that you are likely to use and it reduces packet count. On MacOSX with debugserver, we expedite the frame pointer backchain for a thread (up to 256 entries) by reading 2 pointers worth of bytes at the frame pointer (for the previous FP and PC), and follow the backchain. Most backtraces on MacOSX and iOS now don't require us to read any memory!
We will try these packets out and if successful, we should port these to lldb-server in the near future.
<rdar://problem/21494354>
llvm-svn: 240354
For some communication channels, sending large packets can be very
slow. In those cases, it may be faster to compress the contents of
the packet on the target device and decompress it on the debug host
system. For instance, communicating with a device using something
like Bluetooth may be an environment where this tradeoff is a good one.
This patch adds a new field to the response to the "qSupported" packet
(which returns a "qXfer:features:" response) -- SupportedCompressions
and DefaultCompressionMinSize. These tell you what the remote
stub can support.
lldb, if it wants to enable compression and can handle one of those
algorithms, it can send a QEnableCompression packet specifying the
algorithm and optionally the minimum packet size to use compression
on. lldb may have better knowledge about the best tradeoff for
a given communication channel.
I added support to debugserver an lldb to use the zlib APIs
(if -DHAVE_LIBZ=1 is in CFLAGS and -lz is in LDFLAGS) and the
libcompression APIs on Mac OS X 10.11 and later
(if -DHAVE_LIBCOMPRESSION=1). libz "zlib-deflate" compression.
libcompression can support deflate, lz4, lzma, and a proprietary
lzfse algorithm. libcompression has been hand-tuned for Apple
hardware so it should be preferred if available.
debugserver currently only adds the SupportedCompressions when
it is being run on an Apple watch (TARGET_OS_WATCH). Comment
that #if out from RNBRemote.cpp if you want to enable it to
see how it works. I haven't tested this on a native system
configuration but surely it will be slower to compress & decompress
the packets in a same-system debug session.
I haven't had a chance to add support for this to
GDBRemoteCommunciationServer.cpp yet.
<rdar://problem/21090180>
llvm-svn: 240066
a little more resilient to freely formatted json. Greg's change
in r238279 made the json output from StructuredData unconditionally
pretty-printed and the spaces were confusing debugserver.
llvm-svn: 239013