register bank twice.
Prior to this change, we were checking if the assignment for the current
machine operand was matching, then we would check if the mismatch
requires to insert repair code.
We actually already have this information from the first check, so just
pass it along.
NFCI.
llvm-svn: 270166
This helper class will be used to represent the cost of mapping an
instruction to a specific register bank.
The particularity of these costs is that they are mostly local, thus the
frequency of the basic block is irrelevant. However, for few
instructions (e.g., phis and terminators), the cost may be non-local and
then, we need to account for the frequency of the involved basic blocks.
This will be used by the greedy mode I am working on.
llvm-svn: 270163
Instead of holding a mask, hold two value: the start index and the
length of the mapping. This is a more compact representation, although
less powerful. That being said, arbitrary masks would not have worked
for the generic so do not allow them in the first place.
llvm-svn: 267025
Although repairing definitions is not mandatory for correctness (only
phis would be impacted because of the RPO traversal), not repairing
might go against the cost model. Therefore, just repair when it is
possible.
llvm-svn: 266025
When assigning the register banks of an instruction, it is best to know
all the constraints of the input to have a good idea of how this will
impact the cost of the whole function.
llvm-svn: 265812
Do not give that much importance to the current register bank of an
operand. This is likely just a side effect of the current execution and
it is properly wise to prefer a register bank that can be extracted from
the information available statically (like encoding constraints and
type).
llvm-svn: 265810
Add verbose information when checking if the current and the desired
register banks match.
Detail what happens when we assign a register bank.
llvm-svn: 265804
specific type.
This will be used to find the default mapping of the instruction.
Also, this information is recorded, instead of computed, because it is
expensive from a type to know which register bank maps it.
Indeed, we need to iterate through all the register classes of all the
register banks to find the one that maps the given type.
llvm-svn: 265736
from a register.
On top of duplicating the logic, it was buggy! It would assert on
physical registers, since MachineRegisterInfo does not have any
information regarding register classes/banks for them.
llvm-svn: 265727
The pass walk through the machine function and assign the register banks
using the default mapping. In other words, there is no attempt to reduce
cross register copies.
llvm-svn: 265707
the mapping of an instruction on register bank.
For most instructions, it is possible to guess the mapping of the
instruciton by using the encoding constraints.
It remains instructions without encoding constraints.
For copy-like instructions, we try to propagate the information we get
from the other operands. Otherwise, the target has to give this
information.
llvm-svn: 265703
helper class.
The default constructor creates invalid (isValid() == false) instances
and may be used to communicate that a mapping was not found.
llvm-svn: 265699
getInstrMapping.
This implementation requires that the target implemented
getRegBankFromRegClass.
Indeed, the implementation uses the register classes for the encoding
constraints for the instructions to deduce the mapping of a value.
llvm-svn: 265624
This will be used by the register bank select pass to assign register banks
for generic virtual registers.
This was originally committed as r265573 but broke at least one windows bot.
The problem with the windows bot was that it was using a copy constructor for
the InstructionMappings class and could not synthesize it. Actually, the fact
that this class is not copy constructable is expected and the compiler should
use the move assignment constructor. Marking the problematic assignment
explicitly as using the move constructor has its own problems.
Indeed, with recent clang we get a warning that we may prevent the elision of
the copy by the compiler. A proper fix for both compilers would be to change the
API of getPossibleInstrMapping to take a InstructionMappings as input/output
parameter. This does not feel natural and since GISel is not used on windows
yet, I chose to workaround the problem by not compiling the problematic code on
windows.
llvm-svn: 265604
instruction on a register bank. This will be used by the register bank select
pass to assign register banks for generic virtual registers." and the follow-on
commits while I find out a way to fix the win7 bot:
http://lab.llvm.org:8011/builders/sanitizer-windows/builds/19882
This reverts commit r265578, r265581, r265584, and r265585.
llvm-svn: 265587
helper class.
The default constructor creates invalid (isValid() == false) instances
and may be used to communicate that a mapping was not found.
llvm-svn: 265581
The method checks that the value is fully defined accross the different partial
mappings and that the partial mappings are compatible between each other.
llvm-svn: 265556
As part of the TRI argument of addRegBankCoverage we already have access to
the TargetRegisterClass through the ID of that register class.
Therefore, there is no point in needing a TargetRegisterClass instance,
the ID is enough to get to it.
llvm-svn: 265487
Change the default constructor to create invalid object.
The target will have to properly initialize the register banks before
using them.
llvm-svn: 265460
Original message:
Get rid of the ifdefs in TargetLowering.
Introduce a new API used only by GlobalISel: CallLowering.
This API will contain target hooks dedicated to call lowering.
llvm-svn: 260998
The rational for this change is that LLVMBuild cannot express conditional
dependencies. Therefore, when we start optionally using GlobalISel library for
say AArch64, without that change, all the tools that use the AArch64 library
would need to explicitly link with GlobalISel when we ask for it.
This does not scale.
Instead, we will set the dependencies between the target and GlobalISel and if
we did not ask to build GlobalISel, the library will just be empty.
Thanks to Chris Bieneman and Mehdi Animi for the idea.
llvm-svn: 260566
Summary:
Mark the LLVMGlobalISel library as optional in
LLVMBuild.txt, since the library is only built
if LLVM_BUILD_GLOBAL_ISEL is set. Without doing
this, llvm-config includes the library in the
list of components regardless of whether it's
built, and then will error out when asked for
the library names/paths.
Reviewers: qcolombet
Subscribers: joker.eph, llvm-commits, vkalintiris
Differential Revision: http://reviews.llvm.org/D16386
llvm-svn: 258379
This patch adds the necessary plumbing to cmake to build the sources related to
GlobalISel.
To build the sources related to GlobalISel, we need to add -DBUILD_GLOBAL_ISEL=ON.
By default, this is OFF, thus GlobalISel sources will not impact people that do
not explicitly opt-in.
Differential Revision: http://reviews.llvm.org/D15983
llvm-svn: 258344