SI_IF and SI_ELSE are terminators which also produce a value. For
these instructions ISel always inserts a COPY to move their value
to another basic block. This COPY ends up between SI_(IF|ELSE)
and the S_BRANCH* instruction at the end of the block.
This breaks MachineBasicBlock::getFirstTerminator() and also the
machine verifier which assumes that terminators are grouped together at
the end of blocks.
To solve this we coalesce the copy away right after ISel to make sure
there are no instructions in between terminators at the end of blocks.
llvm-svn: 207591
SALU instructions ignore control flow, so it is not always safe to use
them within branches. This is a partial solution to this problem
until we can come up with something better.
llvm-svn: 207590
This is a squash of several optimization commits:
- calculate DIV_Lo and DIV_Hi separately
- use BFE_U32 if we are operating on 32bit values
- use precomputed constants instead of shifting in UDVIREM
- skip the first 32 iterations of udivrem
v2: Check whether BFE is supported before using it
Patch by: Jan Vesely
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 207589
Use scalar BFE with constant shift and offset when possible.
This is complicated by the fact that the scalar version packs
the two operands of the vector version into one.
llvm-svn: 206558
Having i128 as a legal type complicates the legalization phase. v4i32
is already a legal type, so we will use that instead.
This fixes several piglit tests.
llvm-svn: 206500
Print in decimal for inline immediates, and hex otherwise. Use hex
always for offsets in addressing offsets.
This approximately matches what the shader compiler does.
llvm-svn: 206335
The TargetLowering::expandMUL() helper contains lowering code extracted
from the DAGTypeLegalizer and allows the SelectionDAGLegalizer to expand more
ISD::MUL patterns without having to use a library call.
llvm-svn: 206037
Moving these patterns from TableGen files to PerformDAGCombine()
should allow us to generate better code by eliminating unnecessary
shifts and extensions earlier.
This also fixes a bug where the MAD pattern was calling
SimplifyDemandedBits with a 24-bit mask on the first operand
even when the full pattern wasn't being matched. This occasionally
resulted in some instructions being incorrectly deleted from the
program.
v2:
- Fix bug with 64-bit mul
llvm-svn: 205731
Acording to AMD documentation, the correct opcode for
BFE_INT is 0x5, not 0x4
Fixes Arithm/Absdiff.Mat/3 OpenCV test
Patch by: Bruno Jiménez
llvm-svn: 205562
Try to match scalar and first like the other instructions.
Expand 64-bit ands to a pair of 32-bit ands since that is not
available on the VALU.
llvm-svn: 204660
It isn't actually used now, and probably never will be, plus it makes
tests less annoying. I also think SC prints GDS instructions as a
separate instruction name.
llvm-svn: 204270
The type of the immediates should not matter as long as the encoding is
equivalent to the encoding of one of the legal inline constants.
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 204056
This instructions writes to an 32-bit SGPR. This change required adding
the 32-bit VCC_LO and VCC_HI registers, because the full VCC register
is 64 bits.
This fixes verifier errors on several of the indirect addressing piglit
tests.
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 204055
LDS instructions are pseudo instructions which model
the OQAP defs and uses within a single instruction.
This fixes a hang in the opencv MedianFilter tests.
llvm-svn: 203818
These are sometimes created by the shrink to boolean optimization in the
globalopt pass.
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 203280
If the SI_KILL operand is constant, we can either clear the exec mask if
the operand is negative, or do nothing otherwise.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 202337
DS instructions that access local memory can only uses addresses that
are less than or equal to the value of M0. When M0 is uninitialized,
then we experience undefined behavior.
This patch also changes the behavior to emit S_WQM_B64 on pixel shaders
no matter what kind of DS instruction is used.
llvm-svn: 201097
There was a problem with the old pattern, so we were copying some
larger immediates into registers when we could have been encoding
them in the instruction.
llvm-svn: 200932
The OpenCL specs say: "The vector versions of the math functions operate
component-wise. The description is per-component."
Patch by: Jan Vesely
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 200773
V_ADD_F32 with source modifier does not produce -0.0 for this. Just
manipulate the sign bit directly instead.
Also add a pattern for (fneg (fabs ...)).
Fixes a bunch of bit encoding piglit tests with radeonsi.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 200743
This didn't work for any integer vectors, and didn't
work with some sizes of float vectors. This should now
work with all sizes of float and i32 vectors.
llvm-svn: 200619
This pattern uses an SDNodeXForm, which isn't being emitted for some
reason. I can get it to work by attaching the PatLeaf that has the
XForm to the argument in the output pattern, but this results in an
immediate being used in a register operand, which the backend can't
handle yet.
llvm-svn: 199918
The control flow finalizer would sometimes use an ALU_POP_AFTER
instruction before the vetex fetch clause instead of using a POP
instruction after it.
llvm-svn: 199917
Implement the getUnrollingPreferences() function for
AMDGPUTargetTransformInfo so that loops that do address calculations
on pointers derived from alloca are unconditionally unrolled.
Unrolling these loops makes it more likely that SROA will be able to
eliminate the allocas, which is a big win for R600 since memory
allocated by alloca (private memory) is really slow.
llvm-svn: 199916
The unit test is now disabled on non-asserts builds.
The CF stack can be corrupted if you use CF_ALU_PUSH_BEFORE,
CF_ALU_ELSE_AFTER, CF_ALU_BREAK, or CF_ALU_CONTINUE when the number of
sub-entries on the stack is greater than or equal to the stack entry
size and sub-entries modulo 4 is either 0 or 3 (on cedar the bug is
present when number of sub-entries module 8 is either 7 or 0)
We choose to be conservative and always apply the work-around when the
number of sub-enries is greater than or equal to the stack entry size,
so that we can safely over-allocate the stack when we are unsure of the
stack allocation rules.
reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 199905
This reverts commit 35b8331cad6eb512a2506adbc394201181da94ba.
The -debug-only flag for llc doesn't appear to be available in
all build configurations.
llvm-svn: 199845
The CF stack can be corrupted if you use CF_ALU_PUSH_BEFORE,
CF_ALU_ELSE_AFTER, CF_ALU_BREAK, or CF_ALU_CONTINUE when the number of
sub-entries on the stack is greater than or equal to the stack entry
size and sub-entries modulo 4 is either 0 or 3 (on cedar the bug is
present when number of sub-entries module 8 is either 7 or 0)
We choose to be conservative and always apply the work-around when the
number of sub-enries is greater than or equal to the stack entry size,
so that we can safely over-allocate the stack when we are unsure of the
stack allocation rules.
reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 199842
v2: Add ftrunc->TRUNC pattern instead of replacing int_AMDGPU_trunc
v3: move ftrunc pattern next to TRUNC definition, it's available since R600
Patch By: Jan Vesely
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 197783
Different sized address spaces should theoretically work
most of the time now, and since 64-bit add is currently
disabled, using more 32-bit pointers fixes some cases.
llvm-svn: 197659
SGPRs are spilled into VGPRs using the {READ,WRITE}LANE_B32 instructions.
v2:
- Fix encoding of Lane Mask
- Use correct register flags, so we don't overwrite the low dword
when restoring multi-dword registers.
v3:
- Register spilling seems to hang the GPU, so replace all shaders
that need spilling with a dummy shader.
v4:
- Fix *LANE definitions
- Change destination reg class for 32-bit SMRD instructions
v5:
- Remove small optimization that was crashing Serious Sam 3.
https://bugs.freedesktop.org/show_bug.cgi?id=68224https://bugs.freedesktop.org/show_bug.cgi?id=71285
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195880
Writing to the M0 register from an SMRD instruction hangs the GPU, so
we need to use the SGPR_32 register class, which does not include M0.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195879
We were ignoring the ordered/onordered bits and also the signed/unsigned
bits of condition codes when lowering the DAG to MachineInstrs.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195514
The legalizer can now do this type of expansion for more
type combinations without loading and storing to and
from the stack.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195398
This is to avoid this transformation in some cases:
fold (conv (load x)) -> (load (conv*)x)
On architectures that don't natively support some vector
loads efficiently casting the load to a smaller vector of
larger types and loading is more efficient.
Patch by Micah Villmow.
llvm-svn: 194783
The LDS output queue is accessed via the OQAP register. The OQAP
register cannot be live across clauses, so if value is written to the
output queue, it must be retrieved before the end of the clause.
With the machine scheduler, we cannot statisfy this constraint, because
it lacks proper alias analysis and it will mark some LDS accesses as
having a chain dependency on vertex fetches. Since vertex fetches
require a new clauses, the dependency may end up spiltting OQAP uses and
defs so the end up in different clauses. See the lds-output-queue.ll
test for a more detailed explanation.
To work around this issue, we now combine the LDS read and the OQAP
copy into one instruction and expand it after register allocation.
This patch also adds some checks to the EmitClauseMarker pass, so that
it doesn't end a clause with a value still in the output queue and
removes AR.X and OQAP handling from the scheduler (AR.X uses and defs
were already being expanded post-RA, so the scheduler will never see
them).
Reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 194755
All shift operations will be selected as SALU instructions and then
if necessary lowered to VALU instructions in the SIFixSGPRCopies pass.
This allows us to do more operations on the SALU which will improve
performance and is also required for implementing private memory
using indirect addressing, since the private memory pointers must stay
in the scalar registers.
This patch includes some fixes from Matt Arsenault.
llvm-svn: 194625
Print the range of registers used with a single letter prefix.
This better matches what the shader compiler produces and
is overall less obnoxious than concatenating all of the
subregister names together.
Instead of SGPR0, it will print s0. Instead of SGPR0_SGPR1,
it will print s[0:1] and so on.
There doesn't appear to be a straightforward way
to get the actual register info in the InstPrinter,
so this parses the generated name to print with the
new syntax.
The required test changes are pretty nasty, and register
matching regexes are now worse. Since there isn't a way to
add to a variable in FileCheck, some of the tests now don't
check the exact number of registers used, but I don't think that
will be a real problem.
llvm-svn: 194443
The SelectionDAGBuilder was promoting vector kernel arguments to legal
types, but this won't work for R600 and SI since kernel arguments are
stored in memory and can't be promoted. In order to handle vector
arguments correctly we need to look at the original types from the LLVM IR
function.
llvm-svn: 193215
The AMDGPUIndirectAddressing pass was previously responsible for
lowering private loads and stores to indirect addressing instructions.
However, this pass was buggy and way too complicated. The only
advantage it had over the new simplified code was that it saved one
instruction per direct write to private memory. This optimization
likely has a minimal impact on performance, and we may be able
to duplicate it using some other transformation.
For the private address space, we now:
1. Lower private loads/store to Register(Load|Store) instructions
2. Reserve part of the register file as 'private memory'
3. After regalloc lower the Register(Load|Store) instructions to
MOV instructions that use indirect addressing.
llvm-svn: 193179
We were calling llvm_unreachable() when failing to optimize the
branch into if case. However, it is still possible for us
to structurize the CFG by duplicating blocks even if this optimization
fails.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
llvm-svn: 192813
We can't enable the verifier for tests with SI_IF and SI_ELSE, because
these instructions are always followed by a COPY which copies their
result to the next basic block. This violates the machine verifier's
rule that non-terminators can not folow terminators.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
llvm-svn: 192366
We were completely ignoring the unorder/ordered attributes of condition
codes and also incorrectly lowering seto and setuo.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
llvm-svn: 191603
For _XYZ, the type of VDATA is v4i32, because v3i32 doesn't exist.
The ADDR64 bit is not exposed. A simpler intrinsic that doesn't take
a resource descriptor might be nicer.
The maximum number of input SGPRs is bumped to 17.
Signed-off-by: Marek Olšák <marek.olsak@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 190575
If we have a binary operation like ISD:ADD, we can set the result type
equal to the result type of one of its operands rather than using
TargetLowering::getPointerTy().
Also, any use of DAG.getIntPtrConstant(C) as an operand for a binary
operation can be replaced with:
DAG.getConstant(C, OtherOperand.getValueType());
llvm-svn: 189227
This adds minimal support to the SelectionDAG for handling address spaces
with different pointer sizes. The SelectionDAG should now correctly
lower pointer function arguments to the correct size as well as generate
the correct code when lowering getelementptr.
This patch also updates the R600 DataLayout to use 32-bit pointers for
the local address space.
v2:
- Add more helper functions to TargetLoweringBase
- Use CHECK-LABEL for tests
llvm-svn: 189221
When truncated vector stores were being custom lowered in
VectorLegalizer::LegalizeOp(), the old (illegal) and new (legal) node pair
was not being added to LegalizedNodes list. Instead of the legalized
result being passed to VectorLegalizer::TranslateLegalizeResult(),
the result was being passed back into VectorLegalizer::LegalizeOp(),
which ended up adding a (new, new) pair to the list instead.
This was causing an assertion failure when a custom lowered truncated
vector store was the last instruction a basic block and the VectorLegalizer
was unable to find it in the LegalizedNodes list when updating the
DAG root.
llvm-svn: 188953
The logic in SIInsertWaits::getHwCounts() only really made sense for SMRD
instructions, and trying to shoehorn it into handling DS_WRITE_B32 caused
it to corrupt the encoding of that by clobbering the first operand with
the second one.
Undo that damage and only apply the SMRD logic to that.
Fixes some derivates related piglit regressions with radeonsi.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 188558
The SIInsertWaits pass was overwriting the first operand (gds bit) of
DS_WRITE_B32 with the second operand (value to write). This meant that
any time the value to write was stored in an odd number VGPR, the gds
bit would be set causing the instruction to write to GDS instead of LDS.
llvm-svn: 188522
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
Now that compute support is better on SI, we can't continue using v16i8
for descriptors since this is also a legal type in OpenCL.
This patch fixes numerous hangs with the piglit OpenCL test and since
we now use a target specific DAG node for LOAD_CONSTANT with the
correct MemOperandFlags, this should also fix:
https://bugs.freedesktop.org/show_bug.cgi?id=66805
llvm-svn: 188429
Using REG_SEQUENCE for BUILD_VECTOR rather than a series of INSERT_SUBREG
instructions should make it easier for the register allocator to coalasce
unnecessary copies.
v2:
- Use an SGPR register class if all the operands of BUILD_VECTOR are
SGPRs.
llvm-svn: 188427
The previous code declared the operand as unknown:$vaddr, which made
it possible for scalar registers to be used instead of vector registers.
llvm-svn: 188425
R600 doesn't need to do any scheduling on the SelectionDAG now that it
has a very good MachineScheduler. Also, using the VLIW SelectionDAG
scheduler was having a major impact on compile times. For example with
the phatk kernel here are the LLVM IR to machine code compile times:
With Sched::VLIW
Total Compile Time: 1.4890 Seconds (User + System)
SelectionDAG Instruction Scheduling: 1.1670 Seconds (User + System)
With Sched::Source
Total Compile Time: 0.3330 Seconds (User + System)
SelectionDAG Instruction Scheduling: 0.0070 Seconds (User + System)
The code ouput was identical with both schedulers. This may not be true
for all programs, but it gives me confidence that there won't be much
reduction, if any, in code quality by using Sched::Source.
llvm-svn: 188215
Since the VSrc_* register classes contain both VGPRs and SGPRs, copies
that used be emitted by isel like this:
SGPR = COPY VGPR
Will now be emitted like this:
VSrC = COPY VGPR
This patch also adds a pass that tries to identify and fix situations where
a VGPR to SGPR copy may occur. Hopefully, these changes will make it
impossible for the compiler to generate illegal VGPR to SGPR copies.
llvm-svn: 187831
* Added R600_Reg64 class
* Added T#Index#.XY registers definition
* Added v2i32 register reads from parameter and global space
* Added f32 and i32 elements extraction from v2f32 and v2i32
* Added v2i32 -> v2f32 conversions
Tom Stellard:
- Mark vec2 operations as expand. The addition of a vec2 register
class made them all legal.
Patch by: Dmitry Cherkassov
Signed-off-by: Dmitry Cherkassov <dcherkassov@gmail.com>
llvm-svn: 187582
This patch prevents the following combine when the input vector is used more
than once.
insert_vector_elt (build_vector elt0, ..., eltN), NewEltIdx, idx
=>
build_vector elt0, ..., NewEltIdx, ..., eltN
The reasons are:
- Building a vector may be expensive, so try to reuse the existing part of a
vector instead of creating a new one (think big vectors).
- elt0 to eltN now have two users instead of one. This may prevent some other
optimizations.
llvm-svn: 187396
These are really the same address space in hardware. The only
difference is that CONSTANT_ADDRESS uses a special cache for faster
access. When we are unable to use the constant kcache for some reason
(e.g. smaller types or lack of indirect addressing) then the instruction
selector must use GLOBAL_ADDRESS loads instead.
llvm-svn: 187006
This increases the number of opportunites we have for folding. With the
previous implementation we were unable to fold into any instructions
other than the first when multiple instructions were selected from a
single SDNode.
Reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 186919
A side-effect of this is that now the compiler expects kernel arguments
to be 4-byte aligned.
Reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 186916
Test is not included as it is several 1000 lines long.
To test this functionnality, a test case must generate at least 2 ALU clauses,
where an ALU clause is ~110 instructions long.
NOTE: This is a candidate for the stable branch.
llvm-svn: 185943
The purpose of this test was to check boundary conditions for the size
of an ALU clause. This test is very sensitive to changes to the
optimizer or scheduler, because it requires an exact number of ALU
instructions in order to remain valid. It's not good to have a test
this sensitive, because it is confusing to developers who implement
optimizations and then 'break' the test.
I'm not sure if there is a good way to test these limits using lit, but
if I can come up with replacement test that isn't as sensitive I'll add
it back to the tree.
llvm-svn: 185084
Note: Only adding test for evergreen, not SI yet.
When I attempted to expand vselect for SI, I got the following:
llc: /home/awatry/src/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp:522:
llvm::SDValue llvm::DAGTypeLegalizer::PromoteIntRes_SETCC(llvm::SDNode*):
Assertion `SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
"Vector compare must return a vector result!"' failed.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184847
No test/expansion for SI has been added yet. Attempts to expand this
operation for SI resulted in a stacktrace in (IIRC) LegalizeIntegerTypes
which was complaining about vector comparisons being required to return
a vector type.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184845
Also add lit test for both cases on SI, and v2i32 for evergreen.
Note: I followed the guidance of the v4i32 EG check... UREM produces really
complex code, so let's just check that the instruction was lowered
successfully.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184844
Also add lit test for both cases on SI, and v2i32 for evergreen.
Note: I followed the guidance of the v4i32 EG check... UDIV produces really
complex code, so let's just check that the instruction was lowered
successfully.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184843
In reality, some unaligned memory accesses are legal for 32-bit types and
smaller too, but it all depends on the address space. Allowing
unaligned loads/stores for > 32-bit types is mainly to prevent the
legalizer from splitting one load into multiple loads of smaller types.
https://bugs.freedesktop.org/show_bug.cgi?id=65873
llvm-svn: 184822
This should only make a difference in programs that use a lot of the
vector ALU instructions like BFI_INT and BIT_ALIGN. There is a slight
improvement in the phatk bitcoin mining kernel with this patch on
Evergreen (vector size == 1):
Before:
1173 Instruction Groups / 9520 dwords
After:
1167 Instruction Groups / 9510 dwords
Reviewed-by: Reviewed-by: Vincent Lejeune<vljn at ovi.com>
llvm-svn: 184819
Also add a v2i32 test to the existing v4i32 test.
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry<awatry@gmail.com>
llvm-svn: 184482
Also add SI tests to existing file and a v2i32 test for both
R600 and SI.
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry <awatry@gmail.com>
llvm-svn: 184481